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Human concepts are task-general
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Human concept learning Is fast

Which is another? What are its parts? Create a new one.

This is a
“breakfast machine.”

*example inspired by a blog post from Vicarious Al



Research questions

 What is the structure of human conceptual representations? How does this
structure support a variety of discriminative and generative abilities?

« How do people acquire such rich representations from so little experience?

« How can we understand these abilities in computational terms??



Intuitive theories
(Murphy & Medin, 1985)

The "language of thought"
(Fodor, 1975)

Boolean concepts
(Feldman, 2000)

Minimal formula

Modeling Traditions

Tradition 1: structured knowledge

Causal-model theory
(Rehder, 2007)
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Synthesis?

(Kruschke, 1992)

Tradition 2: statistical knowledge

Semantic Cognition Network
(Rogers & McClelland, 2003)
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Finding Structure in Time
(EIman, 1990)




Prior work: Integrating structure and statistics

Bayes' rule:

Structural Forms
(Kemp & Tenenbaum, 2008)
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Bayesian Program Learning
(Lake et al., 2015)

procedure GENERATETYPE

Kk P(k) > Sample number of parts
for:=1... kdo
n; < P(n;|k) > Sample number of sub-parts

forj =1..n;do
sij < P(sij|sij—1)) > Sample sub-part sequence
end for
R; + P(RL’SL ees Si—l)
end for
Y« {k,R,S}
return @GENERATETOKEN(v)) > Return program

> Sample relation

S1:

D1 :

D2 :

Cl:

C2:

Pl :

P(structure | data) o P(structure)P(data | structure)

Rational Rules
(Goodman et al., 2008)
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Proposal: Generative Neuro-Symbolic (GNS) modeling

procedure GENERATEEXAMPLE
C <+ 0
for:=1...,.c0do

> |nitialize blank canvas

r; < GENERATEPART(C) > Sample part supports (.)
r; < GENERATERELATION(C, x;) > Sample relation 5
C' < RENDER(C, x;,1;) > Render new canvas T
if TERMINATE?(C) then > Sample termination (y/n) \ ,
break . | R
return C > Return example a==2 P=7 /
g GENERATERELATION
GENERATEPART :
Canvas:. e
C

RENDER

New example



Agenda

Case study #1: handwritten characters
Case study #2: structured visual concepts ("alien figures")
Additional projects

Summary & conclusions



Case study #1:
handwritten characters
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The Omniglot Challenge  «akeetal 2015
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GNS model of character concepts

procedure GENERATETYPE
Canvas ‘ *\ C + 0 > Initialize blank image canvas
C . while true do
{g@ lyi, x;] < GENERATEPART(C) © Sample part location & parameters
ﬂx@ C' < frender(Yi, s, C) > Render part to image canvas
v; ~ p(v | C) > Sample termination indicator
iIf v; then
GENERATEPART break > Terminate sample
¢ A {/{7 Y1k, 331:/1}
v return > Return concept type
Part GENERATEPART(C)
yi, xi p(AI)
stroke model p(x | vy, C
location model p(y | C) P ]y, ©) “e
type level _attention p(A, | Ay
——————— P(y) \ :
token level L () '
& ~O-Em
Image T p(ATl A1:T—1)
I Y o




The Omniglot Challenge
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procedure GENERATETYPE |

Generating new concepts

GNS model

1. Log-likelihoods (LL) of held-out

2. Model samples
concepts
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Generating new concepts
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Nearest neighbors are located using the embedding of a convolutional neural network (CNN)



The Omniglot Challenge
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One-Shot Classification
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The Omniglot Challenge
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Generating new exemplars

Parsing

GNS parses
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Conclusions: Case study #1

 Humans quickly grasp new concepts and use them in a variety of ways

* Generative Neuro-Symbolic (GNS) models capture the dual structural and
statistical components of character concepts and generalize to novel
alphabets and a range of tasks

 GNS models offer an account for how previous experience can support the
rapid acquisition of new concepts via priors



Case study #2:
structured visual concepts
("alien figures")




Alien figures

Yanli Zhou
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Human experiments

Cateqgorization

Here are 3
examples of

a “wif’:

Is this also a "wif?"

Identity

Novel config.

Part

Novel part

B Human judgements

Wider Other

Generation
Here are 3 v o
examples of
a "dax':

-----------------------------------------------------------------------------

Can you make another "dax?"
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AR 770
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DD2+ 270

CCS540

Human
generations



Generation task MTurk interface

Here are 3 examples: .l

Trial 1/10



Observation
("support set")

X

Symbolic Bayesian model
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Generative neuro-symbolic (GNS) model

1. Neural encoder 2. Generative neuro-symbolic decoder
key
procedure GENERATETOKEN(z) X: encoder embedding
o o C: canvas (partial object)
q > while True do ¢;: primitive ID for part 1
erirlj)ce(zjdei;g ¢; < GENERATEPART(x, () r;: symbolic relation for part

r; +— GENERATERELATION(z, C, ¢;)
C < RENDER(C, ¢;, ;)
if TERMINATE(z, C) then

break 7
return C
> |

GENERATERELATION

! u Canvas:
C
Support set

____________________________________________

IlyeSII

. TERMINATE?

New token



GNS subroutines

(example for 3rd part)
attachment @

spec

GENERATEPART(z, C) — ¢;

GENERATERELATION(z, C, ¢;) — 7 I r ~ p(r)

@ primitive id
softmax
T ¢c; ~ p(c;)

e e (e
| % |

Dense
Dense

/ 1 AR

i X i . . .
encoder encoder - option 1 option 2 option N
embedding primitive id

C embedding C
loames A 1 C




Meta-learning

Support Set Query Set Y2

X Jo(y; X) p( |

Objective: maximize log-likelihood of query
tokens conditioned on the support



P
Synthetic data
distribution

R
Resampled synthetic
data distribution

H
Human distribution

C
Bias training
distribution

Meta-learning training data

bootstrapping the symbolic Bayesian model

procedure P

h ~ p(h)

S=x1,....,2, ~px|h)
Q=2a,..,2 ~plx|h)
return S, ¢

> Sample formula hypothesis from prior
> Sample support set from formula
> Sample query set from formula

procedure R

S ~ Uniform(®)

h ~p(h|S)
Q=u1,..,x, ~plx|h)
return S, ()

> Sample support set from human trials
> Sample formula hypothesis from posterior
> Sample query set from formula

procedure H

S, @ ~ Uniform(®)
return S, ()

> Sample support & query sets from human trials

(see Section 4.4 and Appendix B.2)



Log-likelihood evaluations

Test log-likelihood

Bayesian

GNS (P/R/H/C)

GNS (P/R/H)
GNS (P/R)

GNS (P)

Likelihood of held-out human generations. For each model,
the total log-likelihood averaged over the holdout set is reported.

frequency
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Paired t-test comparing per-example log-
likelihood of GNS (P/R/H/C) vs. Bayesian

1(336) =6.197, p < 0.001

-2 0 2 4 6
log pa(x) - log pp(x)



Log-likelihood evaluations

new

support set token freq. delta
(2) 4.70
(1) 3.22
(1) 3.19
(5) 2.18
(1) 1.90
(1) 1.69
(3) 1.62
(1) 1.47




Support set

Accounting for human inductive biases

Human tokens —

Support set
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Accounting for human inductive biases

Here are 3 Here are 3
examples examples
of a ‘dax’: of a ‘dax’:
1.00; 1.00;
0.75- 0.75-
0.50- 0.50-
0.25- 0.25-
0.00 Com'plete Recorifigure 0.00 Com‘plete Recorifigure

"rotations" trial type

Human
Bayesian
GNS

Here are 3 Here are 3
examples examples
of a ‘wif’: of a ‘wif’:
1.00- 1.00,
0.751 0.751
0.501 0.50
0.251 0.251
0.00 Com'plete Recorifigure 0.00 Com'plete

Recohfigure



Accounting for human inductive biases

Here are 3 Here are 3
examples examples
of a lug’: ofa ‘lug’:
1.00 1.00
0.75 0.751
0.50 0.50
0.25] 0.25]
0.00 0.00

ComIpIete

Recoﬁfigure

Com'plete

Recorifigure

"primitives” trial type

Human
Bayesian
GNS

Here are 3 Here are 3
examples examples
of a kiki’: of a ‘kiki’:
1.00, 1.00,
0.751 0.751
0.50 0.50
0.251 0.25]
0.00 Com'plete Recorifigure 0.00 Com'plete

Recorifigure



Conclusions: Case study #2

 GNS models are an effective way to understand and simulate human few-
shot learning of structured visual concepts

 Compared to a strong symbolic baseline model, GNS provides an
improved likelihood account of human few-shot generation

 GNS can account for human inductive biases that are not well-explained
by alternatives



Additional projects




Learning inductive biases with simple neural networks

(Feinman & Lake, 2018)

Shape bias test

This is a “dax.”

| (Smith et al.,
b o 7 2 O O 2 )
Convolutional neural network (CNN) architecture

Where is the other “dax?”

. | *conv and fully-connected
Stimulus layers use RelLU activation

(200x200x4) Obiject

CNN shape bias strength vs. dataset size
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Learning a smooth kernel regularizer for
convolutional neural networks

(Feinman & Lake, 2019)

PHASE 1 PHASE 2
) )

( | \
A) Train CNN B) Extract kernel C) Apply SK-reg to
(repeat 20x) statistics new task

kernel datasets per Gaussian fits per conv layer
conv layer (samples shown)
Dataset 3: 0 31:/\4—1 S . N (O, 23)
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! =MERTNE IEF e | 1T PR L
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Summary & Conclusions



introduced Generative Neuro-Symbolic (GNS) modeling

procedure GENERATEEXAMPLE

C<+0 > Initialize blank canvas
for:=1...,.c0do
r; < GENERATEPART(C) > Sample part supports (.)
r; < GENERATERELATION(C, z;) > Sample relation 5
C' < RENDER(C, z;, ;) > Render new canvas T """""""""""""""""""""""""""
if TERMINATE?(C) then > Sample termination (y/n) 5 , , ves'
break . | A RENDER
return C > Return example a=z P=Eg / ;
GENERATERELATION .~ TERMINATE?
GENERATEPART
Canvas:
C v




GNS model of handwritten character concepts

GENERATEPART
P(Ai11]|Ay)
procedure GENERATECHARACTER
C'+0 > Initialize blank canvas
for 1 =1...,00 do
r; < GENERATERELATION(C) > Sample relation  GENERATERELATION | l TERMINATE’? """"
r; < GENERATEPART(C, ;) > Sample part 5 i
C' < RENDER(C, x;,7;) > Render to canvas (1) E— 'yes’
v; < TERMINATE?(C) > Sample termination indicator 5 “ _
if v; then
break > Terminate sample
return C
Canvas:
C '
—_— —_—




GNS model of synthetic part-based concepts ("alien figures")

&
!
Support set

X

encoder
embedding

procedure GENERATE TOKEN(x)

C+0

while True do
¢; < GENERATEPART(z, C)
r; < GENERATERELATION(z, C, ¢;)
C' < RENDER(C, ¢;, 1;)
if TERMINATE(x, C') then i

break

|

return C »
1

RENDER

g GENERATERELATION
g GENERATEPART

Canvas: ———
C

"yeS"

~ TERMINATE? ‘




(General conclusions

* Generative neuro-symbolic (GNS) modeling provides a novel synthesis of
ideas from the structured and statistical modeling traditions

By combining these ingredients in a computational model, we can account
for human concept learning in ways that purely- symbolic and neural
models fall short

 GNS models can help us understand the dual structural and statistical
natures of human knowledge and direct us toward a more accurate
representation of concepts
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Questions?

"What | cannot create, | do not understand.”

—Richard Feynman



Inductive biases of GNS architecture

supports (.)
A

Explicit notion of causality via symbolic
primitives and renderer

. GENERATEPART

Compositional representation via modular
subroutines and controlled memory state
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Forward model in action
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GENERATERELATION(z, C, ¢;) — ;

probabilities 0.79
A
logits 4.95
MLP
T A A
|
h
hllg}iern b p0-s2 p5-s1
prev. part new part
prev. part side side
image embedding embedding
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0.02
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A
-1.03
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GNS: Best-performing GNS model from the
generation task (experiment 1), evaluated without
any modification

GNS FT: A finetuned variant of the GNS model
from generation. The model is initialized with the
generation parameters and further optimized
using (a subset of) human categorization data

Pearsonr

Spearman r

Correlation with human judgements. Correlation
coefficients are computed for each concept type, and the
average coefficient across types is reported.



