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Human concepts are task-general

Generation

(Jongejan et al., 2016)

Parsing

98 Artificial intelligence

Figure 1

The Omniglot challenge of performing five concept learning tasks at a human level. (a) Two trials of one-shot classification, where a single image
of a new character is presented (top) and the goal is to select another example of that character amongst other characters from the same
alphabet (in the grid below). In panels (b–e), human participants and Bayesian Program Learning (BPL) are compared on four tasks. (b) Nine
human drawings (top) are shown with the ground truth parses (human) and the best model parses (machine). (c) Humans and BPL were given an
image of a new character (top) and asked to produce new examples. (d) Humans and BPL were given a novel alphabet and asked to produce
new characters for that alphabet. (e) Humans and BPL produced new characters from scratch. The grids generated by BPL are (c) (by row) 1, 2;
(d) 2, 2; (e) 2, 2. Reprinted and modified from Lake et al. [1!!].
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(Ward, 1994)
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(Lake et al., 2015)

segway



Human concept learning is fast

This is a 
“breakfast machine.”

Which is another? What are its parts? Create a new one.

*example inspired by a blog post from Vicarious AI



• What is the structure of human conceptual representations? How does this 
structure support a variety of discriminative and generative abilities? 


• How do people acquire such rich representations from so little experience?


• How can we understand these abilities in computational terms?

Research questions



Modeling Traditions
Tradition 2: statistical knowledge

Semantic Cognition Network

(Rogers & McClelland, 2003)

Finding Structure in Time

(Elman, 1990)

ALCOVE

(Kruschke, 1992)

Synthesis?

Tradition 1: structured knowledge

Causal-model theory

(Rehder, 2007)

Intuitive theories
(Murphy & Medin, 1985)

Boolean concepts
(Feldman, 2000)

The "language of thought"
(Fodor, 1975)



Prior work: Integrating structure and statistics

Rational Rules
(Goodman et al., 2008)

Structural Forms 
(Kemp & Tenenbaum, 2008)

Bayesian Program Learning 
(Lake et al., 2015)

(structure | data)  (structure) (data | structure)P ∝ P PBayes' rule:



Proposal: Generative Neuro-Symbolic (GNS) modeling

GENERATEPART

GENERATERELATION
α =

1
3

, β =
1
2

TERMINATE?

"yes"

supports(    )

Canvas:
C

RENDER

New example

procedure GENERATEEXAMPLE

C  0 . Initialize blank canvas

for i = 1...,1 do
xi  GENERATEPART(C) . Sample part

ri  GENERATERELATION(C, xi) . Sample relation

C  RENDER(C, xi, ri) . Render new canvas

if TERMINATE?(C) then . Sample termination (y/n)

break

return C . Return example

1



• Case study #1: handwritten characters


• Case study #2: structured visual concepts ("alien figures")


• Additional projects


• Summary & conclusions

Agenda



Case study #1:  
handwritten characters

(Lake et al., 2015)
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type level

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

C
Canvas

yi, xi

Part

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1
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token level

Image
I

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

location model  p(y ∣ C)

CNN MLP

stroke model  p(x ∣ y, C)

CNN LSTM

y

C

attention

p(y)

p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)
…C

GNS model of character concepts
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Generating new concepts

GNS -19.51

H-LSTM -20.16

LSTM -19.66

Test loss per drawing trajectory

1. Log-likelihoods (LL) of held-out 
concepts

HumansBPL model

(centered)

GNS model
fully-symbolic model (BPL)

GNS model

Omniglot

HumansBPL model

(centered)

GNS model

HumansBPL model

(centered)

GNS model

2. Model samples

Replicates across different train/test splits

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

GNS -383.67

VHE -546.84

SG -861.05

Approximate test LL per pixel image



Full NS Model Hierarchical LSTM Baseline LSTM BPL (unconditional) Ground Truth

Figure 5: Character sample comparison. Characters generated by our Full NS, H-LSTM and Baseline LSTM models are shown side-by-
side, along with samples from the BPL forward model2 as well as ground truth characters from Omniglot.

Full NS Model Hierarchical LSTM Baseline LSTM

Figure 6: Novelty of character samples. Character drawings
sampled from each model were compared to their 5 nearest neigh-
bors from the training set. Each row corresponds to one character
sample from the model. The red box indicates the model sample,
and the 5 nearest neighbors are shown in the succeeding columns.

Results. Results from the cross-validation splits are shown
in Table 1, “Alphabet Splits” and “Character Splits.” In our
alphabet splits, the Full NS model consistently outperformed
the alternatives, exhibiting the best generalization perfor-
mance in each of the 3 splits. Thus, our neuro-symbolic ar-
chitecture appears best equipped to capture overarching prin-
ciples in handwriting concepts that generalize far outside of
the training examples.

In our character splits task, the Baseline LSTM exhibited
best performance in 2 out of 3 splits, and the Full NS model in
1 of 3. The character splits present a much easier generaliza-
tion task, where exemplar-based learning could offer a suit-
able alternative to learning general structural principles. In-
terestingly, the selected hyperparameter configuration for our
Full NS model remained constant across the “alphabet” and
“character” split tasks, whereas the configuration changed for
both the Baseline and H-LSTM models.

Results for each model on the held-out set of characters
are shown in Table 1, “Holdout.” Similarly to the “alphabets”
task, our Full NS model outperforms both alternative models
on the holdout set, providing further support that this archi-
tecture learns the best general model of these simple visual
concepts. A paired t-test reveals the Full NS model has reli-
ably better loss per example than the next-best model (Base-
line; t(5531) = 3.094; p < 0.002).

Generating New Concepts

Methods. In our qualitative analysis, we analyzed the 3
neural network models on their ability to produce novel vi-
sual concepts. We took our trained models from the previous
experiment and sampled 36 characters from each model, fol-
lowing the model’s causal generative procedure. In addition,
we sampled 36 characters from the BPL character prior, and
we selected 36 “ground truth” characters from Omniglot at
random. Samples were then compared visually side-by-side.

As an additional qualitative analysis, we compared charac-
ter samples from each model for their similarity to the train-
ing examples. Although the complexity and structural co-
herence of generated characters are important criteria, these
observations alone provide insufficient evidence for a human-
like generative process; a model that memorizes the training
examples might produce samples with structural coherence
and rich variations, but such a model does not account for the
flexible ways that humans generate new concepts. In our sec-
ond analysis, we took the character samples from our models
and found the 5 most-similar training characters for each, us-
ing cosine distance in the last hidden layer of a CNN classi-
fier as a metric space for perceptual similarity. The CNN was
trained to classify characters from the Omniglot background
set, a 964-way classification task.

Results. Fig. 5 shows samples from each of our three mod-
els, as well as from the BPL forward model2 and from the
Omniglot data (ground truth). Compared to BPL, the neural-
enhanced models capture more correlational structure and
character complexity. For instance, the Full NS model propa-
gates stylistic and structural consistency across three strokes
to form a Braille-like character, as shown by the sample in
column 1, row 2. Fig. 6 shows a handful of character sam-
ples produced by each neural model plotted alongside their
five nearest neighbors from the Omniglot training set. Unlike
the log-likelihood results, comparing models in this fashion
is subjective; nevertheless the H-LSTM and Baseline LSTM
produce more characters that closely mimic the nearest train-

2BPL character samples have been centered for better visual ap-
pearance; the actual samples often protrude outside of the image
window. A more complex non-parametric BPL model was used in
the visual Turing tests in Lake et al. (2015) that has explicit re-use
of character parts. Those samples were also centered.

samples from Full NS 
model (T=0.5)

corresponding 
Omniglot neighbors

stroke key:

Figure 7: Topologically-Organized character samples and their
nearest Omniglot neighbors. We drew 100 character samples
from our Full NS model and organized them into a 10x10 grid such
that neighboring characters have similar drawing styles (left). We
then found the “nearest neighbor” of each sample from the Omniglot
character dataset and organized the neighbors into a corresponding
10x10 grid (right).

ing examples (7/9 by our eyes). In contrast, our Full NS
model produces only a few (3/9) characters that are close mir-
rors of training examples, suggesting that it can generalize
further from the training observations.

To get an idea of the different character styles produced
by our Full NS model, we sampled 100 characters from the
model and organized them into a 10x10 grid such that neigh-
boring characters have high perceptual similarity (Fig. 7,
left). Characters were sampled at a lower level of stochastic-
ity, using the temperature parameter proposed by Ha & Eck
(2018) to modify the entropy of the mixture density outputs
(we used T = 0.5). The model produces characters in multi-
ple distinct styles, with some having more angular, line-based
structure and others relying on complex curves. In Fig. 7
(right), we plotted the most-similar Omniglot character for
each sample in a corresponding grid. In many cases, samples
from the model have a distinct style and are visually dissimi-
lar from their nearest Omniglot neighbor.

Conclusion
We presented a new neuro-symbolic generative model of sim-
ple visual concepts. Our model successfully captures com-
positional and causal structure in handwritten character con-
cepts, forming a representation that generalizes to new con-
cepts. We tested our model by comparing its likelihood scores
on a holdout set of novel characters, finding that it consis-
tently outperforms two generic neural network alternatives
when the test characters deviate significantly from the train-
ing examples. Furthermore, our generative model produces
new character concepts with richer variations than simple
parametric models, yet that remain structurally coherent and
visually consistent with human productions.

Neuro-symbolic models offer a promising set of tools to
express the rich background knowledge that enables cre-
ative generation. These models can explain the nonparamet-
ric correlation structure embodied in conceptual knowledge
while maintaining important inductive biases to account for

the structured ways that people generate new concepts. We
believe that models of this kind will be useful to explain
a variety of human imaginative behaviors, such as when a
chef creates the new recipe “pea guacamole.” In future work,
we’d like to explore applications of neuro-symbolic models
to other types of concepts with varying complexity.
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Nearest neighbors are located using the embedding of a convolutional neural network (CNN)
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One-Shot Classification

Results (400 trials)

Accuracy
Humans 95.5%

GNS 94.3%
BPL 96.7%

Inference

fit score: 

25.3

fit score: 

12.1

Training item

Test items

Re-fitting

where is another?

Target

(Section 3.5)
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Parsing

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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Many more examples are provided in Section 3.6 and Appendix A.5



• Humans quickly grasp new concepts and use them in a variety of ways


• Generative Neuro-Symbolic (GNS) models capture the dual structural and 
statistical components of character concepts and generalize to novel 
alphabets and a range of tasks


• GNS models offer an account for how previous experience can support the 
rapid acquisition of new concepts via priors

Conclusions: Case study #1



Case study #2:  
structured visual concepts 

("alien figures")



Alien figures
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Here are 3 
examples of 
a “dax”:

Here are 3 
examples of 
a “wif”:

Here are 3 
examples of 
a “blicket”:

Here are 3 
examples of 
a “lug”:

A B

C D

Figure 4: Model predictions on 4 of the trial types used in Experiment 2. The set of training examples is shown on the top of each panel;
examples of test items were shown at the bottom. Identity test items are identical to one of the examples; Part test items are parts appeared
in one of examples; Novel configurations items were new configurations of parts in examples; Novel part items were conceptually consistent
with examples but contained unseen parts; Higher-level items were configurations with one of examples as subpart; No repetition, No common
and Other items in B,C and D were conceptually inconsistent with examples; Wider items in D are samples from a wider concept for which
the set of possible extensions is a superset of the concept of interest.

ity that the label ly of y is consistent with the set of observed
examples X as

P(ly = 1|X) = Â
h2H

P(ly = 1|h)P(h|X)

where H is the hypothesis space considered in our study.
Approximate posterior inference was implemented in the
LOTlib3 software package (Piantadosi, 2014). For each trial,
we ran 3 Monte Carlo chains for 100,000 steps of a tree-
regeneration Markov chain Monte Carlo (MCMC) procedure
(Goodman et al., 2008).

Parameter fitting. Given behavioral data collected in our
experiments, we are interested in finding the set of grammar
parameters that most likely generated people’s generalization
patterns. Formally, we would like to infer the probability of
the set of parameters of interest, given human response data:
argmax~q,a,b P(~q,a,b|R,Y ), where~q, a and b are parameters
of the learning model and R is the set of human responses
to the set of test items Y . To account for possible response
noise in our collected generalization judgements, we fitted
for a lapse rate a, or the probability that a response was made
at random. In the case of a lapse trial, we also represented
a baseline preference for answering Yes with parameter b. ~q
is the set of grammar parameters, which are the probabili-
ties associated with the distribution of expansions for each

non-terminal. We only considered 2 such parameters that
are cognitively meaningful, and we fixed the rest to be uni-
form. The 2 grammar parameters encode participants’ pref-
erences for orientation invariance and configuration invari-
ance, respectively. We discuss the implications of the fitted
values of these parameters in the Results section. The model-
fitting procedure closely followed the one implemented by
Piantadosi, Tenenbaum, and Goodman (2016), in which we
performed posterior sampling of free parameters via MCMC,
using a Dirichlet prior for~q and a uniform prior for a and b.

Alternative models

We compared the Bayesian learning model to two versions of
an exemplar model known as the Generalized Context Model
(GCM) (Nosofsky, 1986). In a GCM, the probability of a new
data item belong to a given concept is evaluated based on how
similar the new observation is to the training examples:

P(ly = Yes|X) µ 1
k

k

Â
i

exp(�w ·d(y,xi))

where d is a distance function and w a scaling factor. The
two variants of GCM implemented used different distance
measures.
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Figure 4: Model predictions on 4 of the trial types used in Experiment 2. The set of training examples is shown on the top of each panel;
examples of test items were shown at the bottom. Identity test items are identical to one of the examples; Part test items are parts appeared
in one of examples; Novel configurations items were new configurations of parts in examples; Novel part items were conceptually consistent
with examples but contained unseen parts; Higher-level items were configurations with one of examples as subpart; No repetition, No common
and Other items in B,C and D were conceptually inconsistent with examples; Wider items in D are samples from a wider concept for which
the set of possible extensions is a superset of the concept of interest.

ity that the label ly of y is consistent with the set of observed
examples X as

P(ly = 1|X) = Â
h2H

P(ly = 1|h)P(h|X)

where H is the hypothesis space considered in our study.
Approximate posterior inference was implemented in the
LOTlib3 software package (Piantadosi, 2014). For each trial,
we ran 3 Monte Carlo chains for 100,000 steps of a tree-
regeneration Markov chain Monte Carlo (MCMC) procedure
(Goodman et al., 2008).

Parameter fitting. Given behavioral data collected in our
experiments, we are interested in finding the set of grammar
parameters that most likely generated people’s generalization
patterns. Formally, we would like to infer the probability of
the set of parameters of interest, given human response data:
argmax~q,a,b P(~q,a,b|R,Y ), where~q, a and b are parameters
of the learning model and R is the set of human responses
to the set of test items Y . To account for possible response
noise in our collected generalization judgements, we fitted
for a lapse rate a, or the probability that a response was made
at random. In the case of a lapse trial, we also represented
a baseline preference for answering Yes with parameter b. ~q
is the set of grammar parameters, which are the probabili-
ties associated with the distribution of expansions for each

non-terminal. We only considered 2 such parameters that
are cognitively meaningful, and we fixed the rest to be uni-
form. The 2 grammar parameters encode participants’ pref-
erences for orientation invariance and configuration invari-
ance, respectively. We discuss the implications of the fitted
values of these parameters in the Results section. The model-
fitting procedure closely followed the one implemented by
Piantadosi, Tenenbaum, and Goodman (2016), in which we
performed posterior sampling of free parameters via MCMC,
using a Dirichlet prior for~q and a uniform prior for a and b.

Alternative models

We compared the Bayesian learning model to two versions of
an exemplar model known as the Generalized Context Model
(GCM) (Nosofsky, 1986). In a GCM, the probability of a new
data item belong to a given concept is evaluated based on how
similar the new observation is to the training examples:

P(ly = Yes|X) µ 1
k

k

Â
i

exp(�w ·d(y,xi))

where d is a distance function and w a scaling factor. The
two variants of GCM implemented used different distance
measures.
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Symbolic Bayesian model
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Generative neuro-symbolic (GNS) model

1. Neural encoder 2. Generative neuro-symbolic decoder

+

x

procedure GENERATEPART(x, C)! ci
return ci

procedure GENERATERELATION(x, C, ci)! ri
return ri

procedure GENERATETOKEN(x)

C  0 . Initialize blank canvas

while True do
ci  GENERATEPART(x, C)
ri  GENERATERELATION(x, C, ci)
C  RENDER(C, ci, ri)
if TERMINATE(x, C) then

break

return C

1

:  encoder embedding

:  canvas (partial object)

:  primitive ID for part 

:  symbolic relation for part 

x
C
ci i
ri i

key

Support set

encoder 

embedding

GENERATEPART
GENERATERELATION

RENDER

TERMINATE?

"yes"

New token

Canvas:

ci

ri

C



GNS subroutines
(example for 3rd part)

canvas

primitive id

Dense

CNN
encoder 

embedding

attachment 
spec

x

procedure GENERATEPART(x, C)! ci
return ci

procedure GENERATERELATION(x, C, ci)! ri
return ri

procedure GENERATETOKEN(x)

C  0 . Initialize blank canvas

while True do
ci  GENERATEPART(x, C)
ri  GENERATERELATION(x, C, ci)
C  RENDER(C, ci, ri)
if TERMINATE(x, C) then

break

return C

1

procedure GENERATEPART(x, C)! ci
return ci

procedure GENERATERELATION(x, C, ci)! ri
return ri

procedure GENERATETOKEN(x)

C  0 . Initialize blank canvas

while True do
ci  GENERATEPART(x, C)
ri  GENERATERELATION(x, C, ci)
C  RENDER(C, ci, ri)
if TERMINATE(x, C) then

break

return C
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…
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Meta-learning

Support Set Query Set

p( | )
Model

p( | )
max

fθ(y; X)X

y1, y2

θ

Objective: maximize log-likelihood of query 
tokens conditioned on the support



P

Synthetic data 

distribution

R

Resampled synthetic 

data distribution

H

Human distribution

Meta-learning training data

procedure P

h ⇠ p(h) . Sample formula hypothesis from prior

S = x1, ..., xn ⇠ p(x | h) . Sample support set from formula

Q = x0
1, ..., x

0
n ⇠ p(x | h) . Sample query set from formula

return S,Q

procedure R

S ⇠ Uniform(�) . Sample support set from human trials

h ⇠ p(h | S) . Sample formula hypothesis from posterior

Q = x0
1, ..., x

0
n ⇠ p(x | h) . Sample query set from formula

return S,Q

procedure H

S,Q ⇠ Uniform(�) . Sample support & query sets from human trials

return S,Q

1

bootstrapping the symbolic Bayesian model

C

Bias training 
distribution

(see Section 4.4 and Appendix B.2)



Log-likelihood evaluations

Test log-likelihood

Bayesian -4.741

GNS (P/R/H/C) -4.444

GNS (P/R/H) -4.535

GNS (P/R) -4.645

GNS (P) -4.930

Likelihood of held-out human generations. For each model, 
the total log-likelihood averaged over the holdout set is reported.

Paired t-test comparing per-example log-
likelihood of GNS (P/R/H/C) vs. Bayesian

t(336) = 6.197, p < 0.001



Log-likelihood evaluations

support set new 
token freq. delta



Accounting for human inductive biases

complete-the-pattern bias

reconfigure bias
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Accounting for human inductive biases

"rotations" trial type
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Accounting for human inductive biases

"primitives" trial type



• GNS models are an effective way to understand and simulate human few-
shot learning of structured visual concepts


• Compared to a strong symbolic baseline model, GNS provides an 
improved likelihood account of human few-shot generation


• GNS can account for human inductive biases that are not well-explained 
by alternatives

Conclusions: Case study #2



Additional projects



1st-order Generalization Test 2nd-order Generalization Test 
(the shape bias test)

“wif”

This is a “dax.”

Where is the other “dax?”

1 2 3

This is a “wif.”

Where is the other “wif?”

“wif” “wif” “wif”

1 2 3

Learning inductive biases with simple neural networks
(Feinman & Lake, 2018)

5x5 Convolution 
(5 feature maps, L2 reg.)

5x5 Max Pooling

Fully-connected Layer 
(25 units, L2 reg., Drop.=0.5)

5x5 Convolution
(5 feature maps, L2 reg.)

5x5 Max Pooling
Softmax Layer

Object 
Name

Stimulus
(200x200x4)

*conv and fully-connected 
layers use ReLU activation

Shape bias test

CNN shape bias strength vs. dataset size

Convolutional neural network (CNN) architecture

(Smith et al., 
2002)



A) Train CNN 
(repeat 20x)

B) Extract kernel 
statistics

C) Apply SK-reg to 
new task

kernel datasets per 
conv layer

Gaussian fits per conv layer 
(samples shown)

Conv1

Conv2

Conv3
!(0, Σ&)

!(0, Σ()

!(0, Σ))

fit Gaussian

fit Gaussian

fit Gaussian

SK(Σ&)

SK(Σ()

SK(Σ))

Image classes for A) Image classes for C)

Phase 1 Phase 2

Dataset 1: θ11:M-1

Dataset 2: θ21:M-1

Dataset 3: θ31:M-1

θ1M

θ2M

θ3M

Learning a smooth kernel regularizer for 
convolutional neural networks (Feinman & Lake, 2019)



Summary & Conclusions



GENERATEPART

GENERATERELATION
α =

1
3

, β =
1
2

TERMINATE?

"yes"

supports(    )

Canvas:
C

RENDER

procedure GENERATEEXAMPLE

C  0 . Initialize blank canvas

for i = 1...,1 do
xi  GENERATEPART(C) . Sample part

ri  GENERATERELATION(C, xi) . Sample relation

C  RENDER(C, xi, ri) . Render new canvas

if TERMINATE?(C) then . Sample termination (y/n)

break

return C . Return example

1

introduced Generative Neuro-Symbolic (GNS) modeling



GNS model of handwritten character concepts

<latexit sha1_base64="uLHmATllqVASrdwoWyNZ8UOMs5E="></latexit>

procedure GenerateCharacter
C  0 . Initialize blank canvas
for i = 1...,1 do

ri  GenerateRelation(C) . Sample relation
xi  GeneratePart(C, ri) . Sample part
C  Render(C, xi, ri) . Render to canvas
vi  Terminate?(C) . Sample termination indicator
if vi then

break . Terminate sample

return C
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GNS model of synthetic part-based concepts ("alien figures")

+

x

procedure GENERATEPART(x, C)! ci
return ci

procedure GENERATERELATION(x, C, ci)! ri
return ri

procedure GENERATETOKEN(x)

C  0 . Initialize blank canvas

while True do
ci  GENERATEPART(x, C)
ri  GENERATERELATION(x, C, ci)
C  RENDER(C, ci, ri)
if TERMINATE(x, C) then

break

return C

1

Support set

encoder 

embedding

GENERATEPART
GENERATERELATION

RENDER

TERMINATE?

"yes"

Canvas:

ci

ri

C



• Generative neuro-symbolic (GNS) modeling provides a novel synthesis of 
ideas from the structured and statistical modeling traditions


• By combining these ingredients in a computational model, we can account 
for human concept learning in ways that purely- symbolic and neural 
models fall short


• GNS models can help us understand the dual structural and statistical 
natures of human knowledge and direct us toward a more accurate 
representation of concepts

General conclusions



Thank You
Tuan-Anh Le

Maxwell Nye


Joshua Tenenbaum

Lucas Tian


+ CoCoSci lab

Brenden Lake

Yanli Zhou

Nikhil Parthasarathy
Guy Davidson

Emin Orhan


Wai Keen Vong

+ HMLL lab

NYU Neuroscience cohort

Andy Feinman

Mary Van Hoomissen


Nick Feinman

Charlotte Walmsley



Questions?

"What I cannot create, I do not understand."
—Richard Feynman



Inductive biases of GNS architecture

GENERATEPART

GENERATERELATION
α =

1
3

, β =
1
2

RENDER

supports(    )

Ct+1 = f(Ct)

Explicit notion of causality via symbolic 
primitives and renderer

Compositional representation via modular 
subroutines and controlled memory state
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Forward model in action



procedure GENERATEPART(x, C)! ci
return ci

procedure GENERATERELATION(x, C, ci)! ri
return ri

procedure GENERATETOKEN(x)

C  0 . Initialize blank canvas

while True do
ci  GENERATEPART(x, C)
ri  GENERATERELATION(x, C, ci)
C  RENDER(C, ci, ri)
if TERMINATE(x, C) then

break

return C
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Alien figures: categorization task

Pearson r Spearman r

GNS 0.761 0.637

GNS FT 0.953 0.881

GNS:  Best-performing GNS model from the 
generation task (experiment 1), evaluated without 
any modification


GNS FT:  A finetuned variant of the GNS model 
from generation. The model is initialized with the 
generation parameters and further optimized 
using (a subset of) human categorization data

Correlation with human judgements. Correlation 
coefficients are computed for each concept type, and the 
average coefficient across types is reported.


