

Generative Neuro-Symbolic Models of Concept Learning

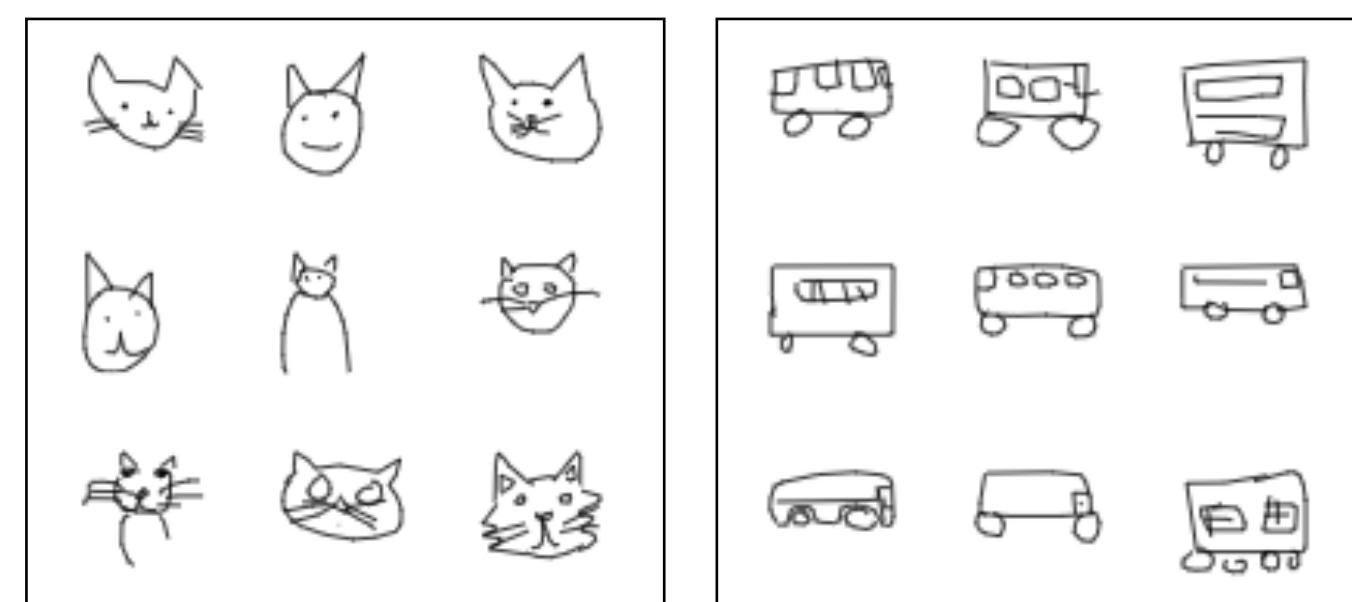
Reuben Feinman

advised by
Brenden Lake

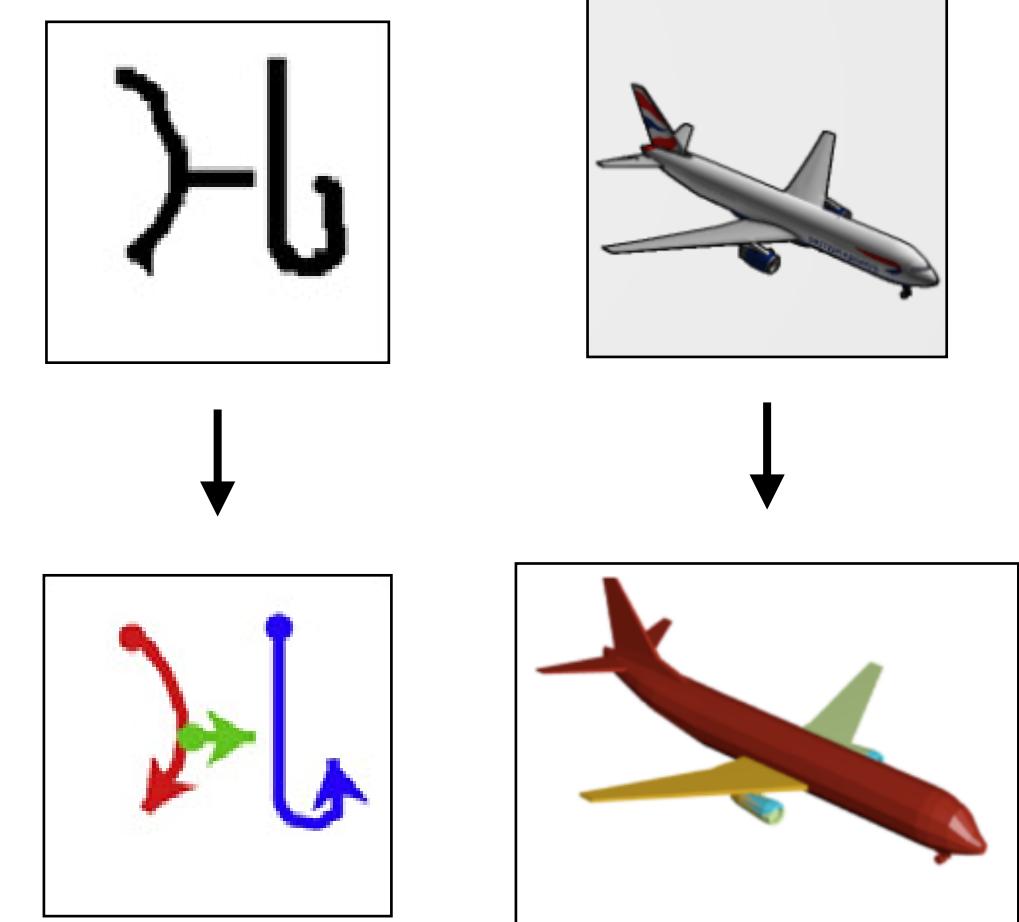
Human concepts are *task-general*

Recognition

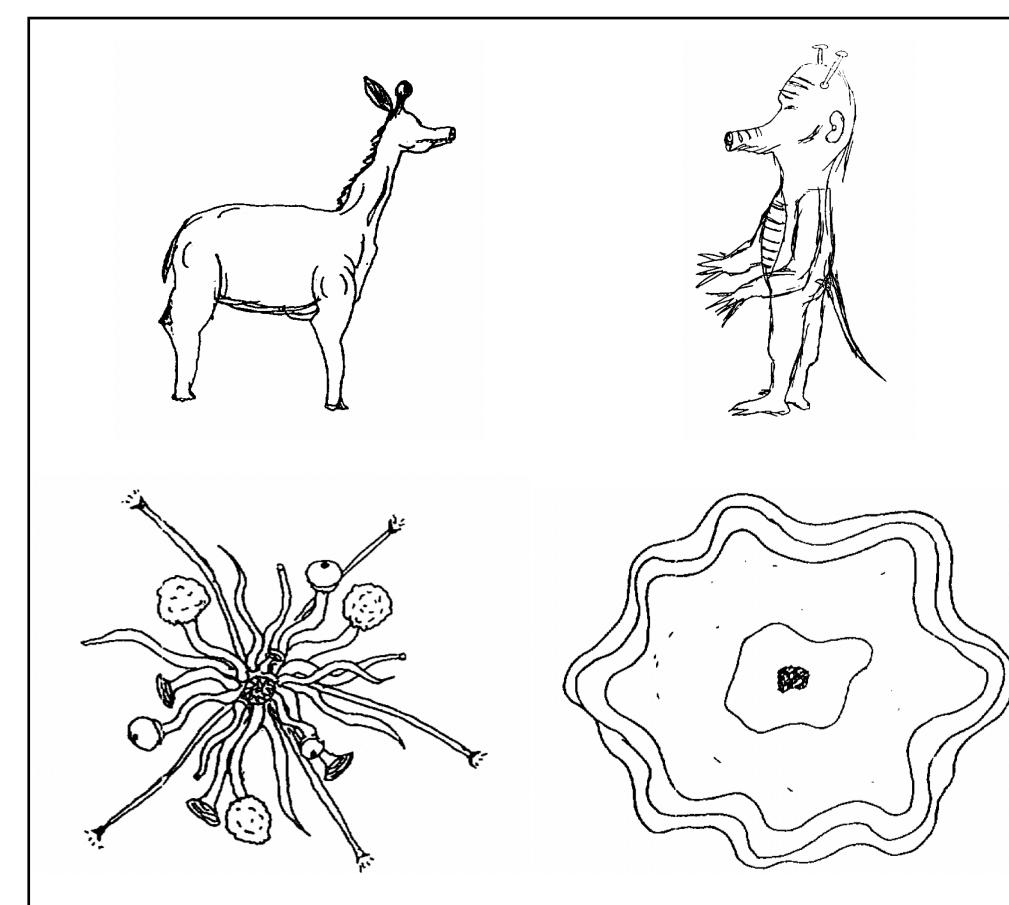
Generation



Parsing



Imagination



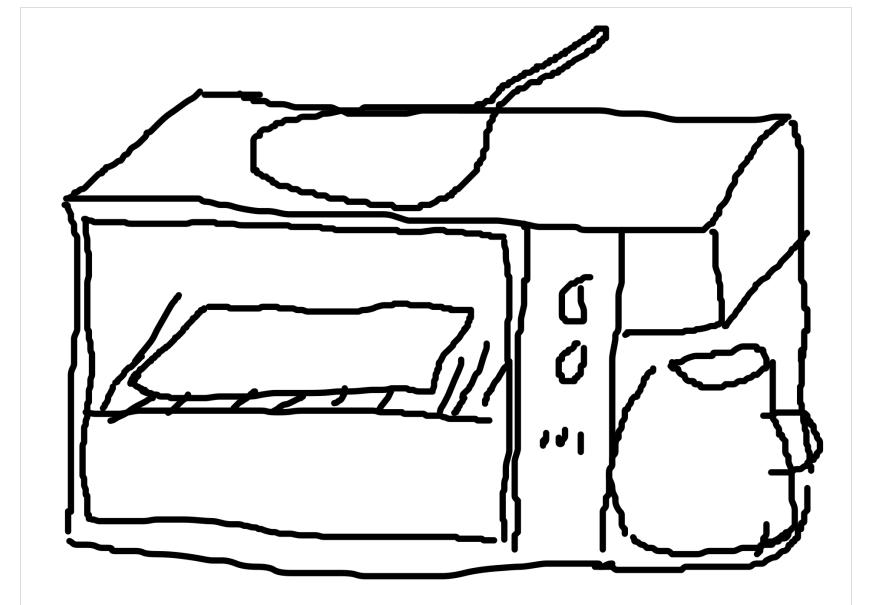
Human concept learning is *fast*

This is a
“breakfast machine.”

Which is another?

What are its parts?

Create a new one.



Research questions

- What is the structure of human conceptual representations? How does this structure support a variety of discriminative and generative abilities?
- How do people acquire such rich representations from so little experience?
- How can we understand these abilities in computational terms?

Modeling Traditions

Tradition 1: structured knowledge

Intuitive theories
(Murphy & Medin, 1985)

The "language of thought"
(Fodor, 1975)

Boolean concepts
(Feldman, 2000)

DNF

$$a'b'c' + a'b'c + a'bc'$$

$$a'b'c' + a'b'c + abc'$$

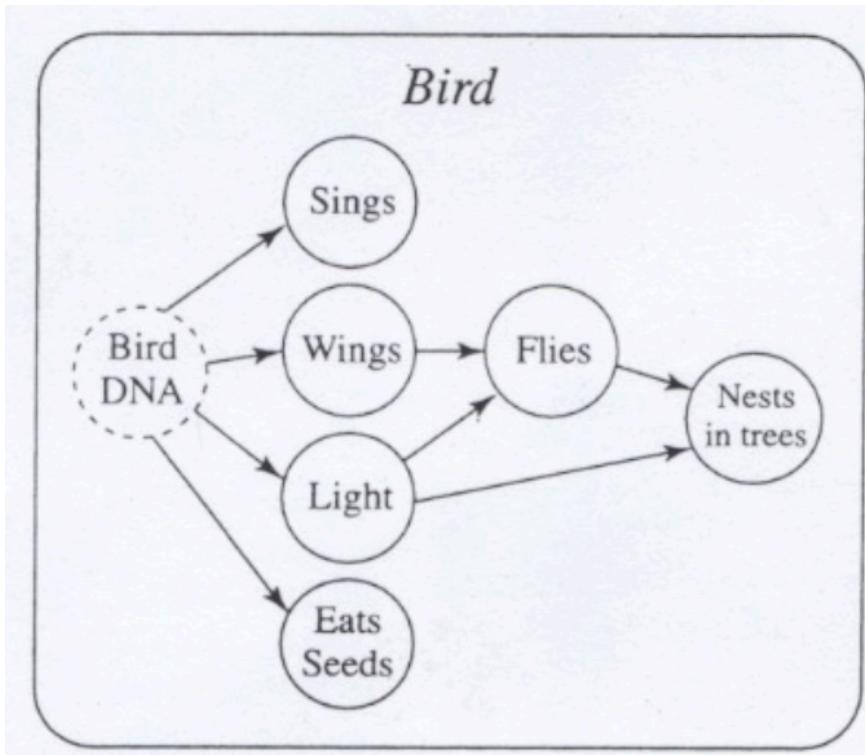
$$a'b'c' + a'bc + ab'c$$

$$a'(bc)'$$

$$a'b' + abc'$$

$$a'(b'c' + bc) + ab'c$$

Causal-model theory
(Rehder, 2007)



Minimal formula

5

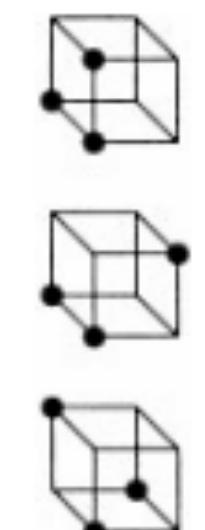
8

Complexity

3

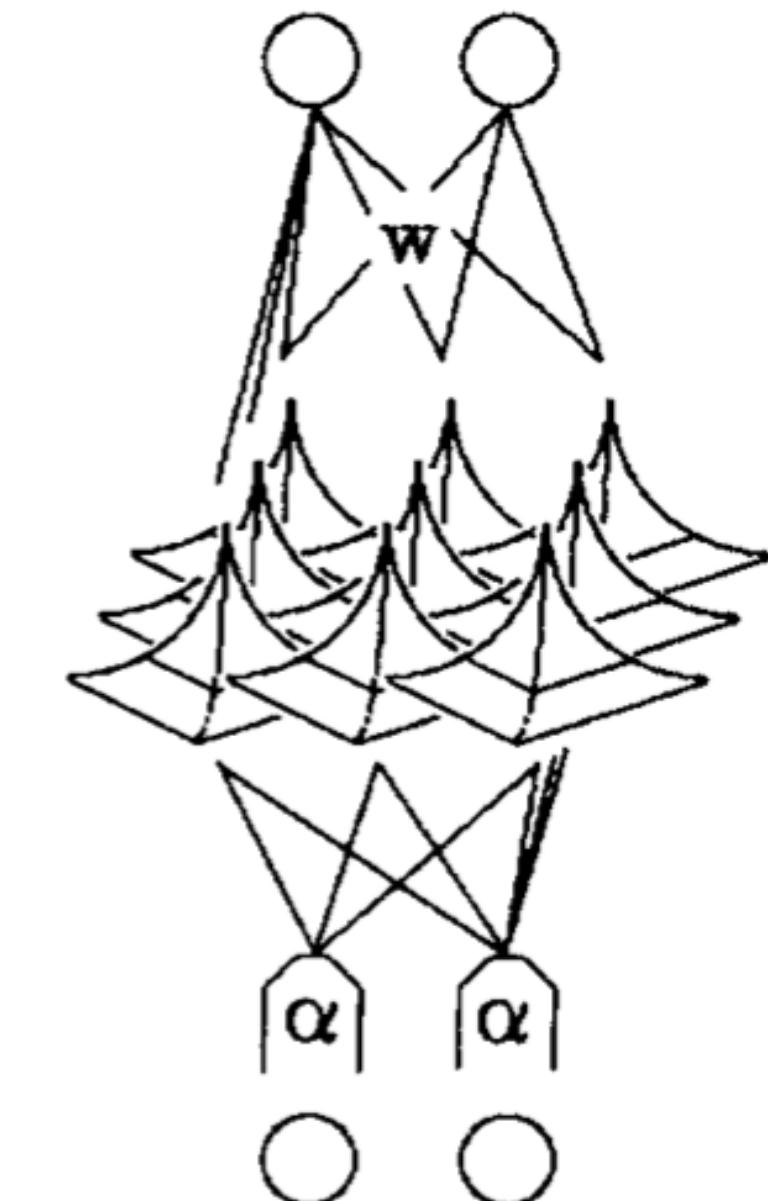
6

Illustration

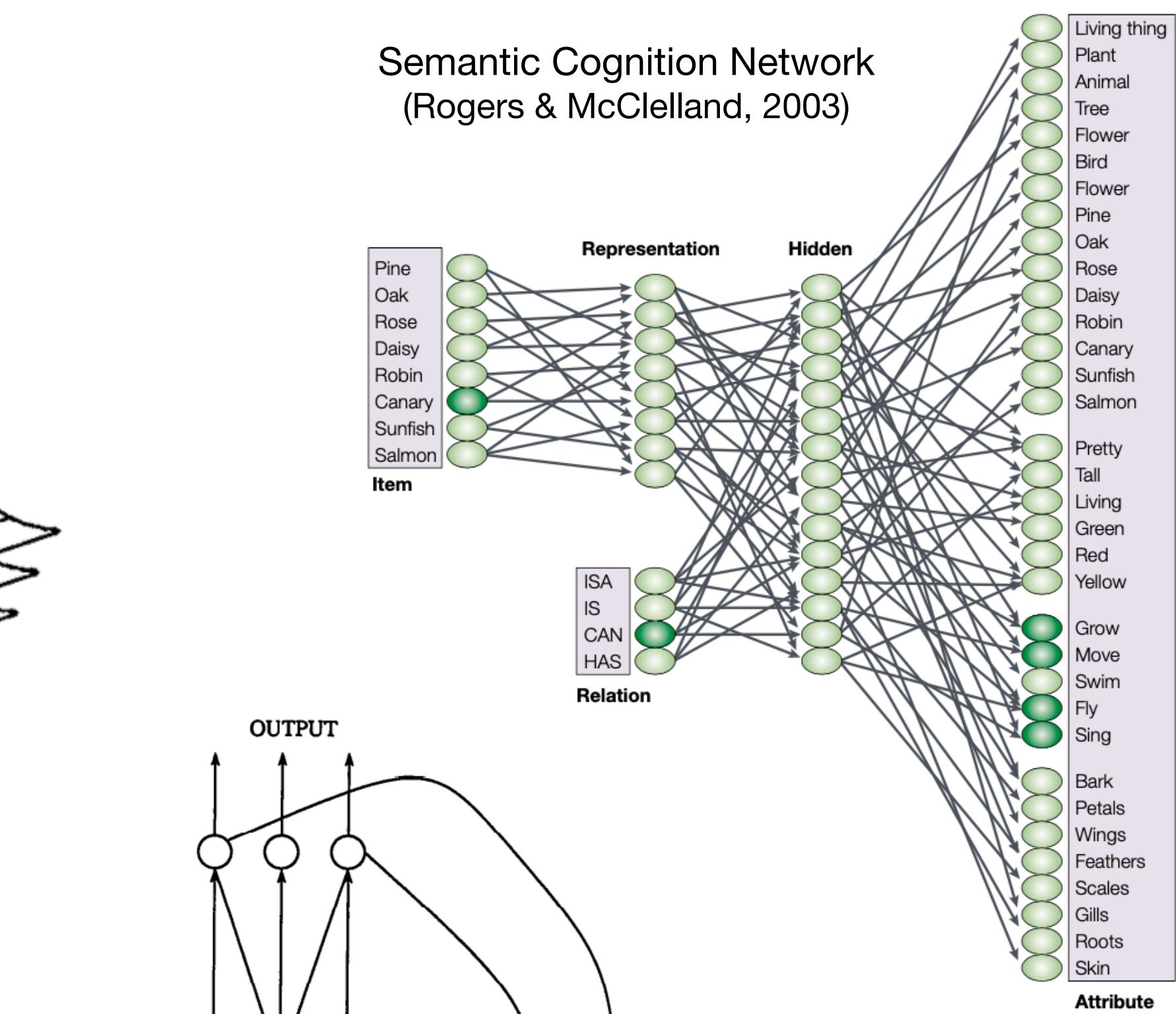
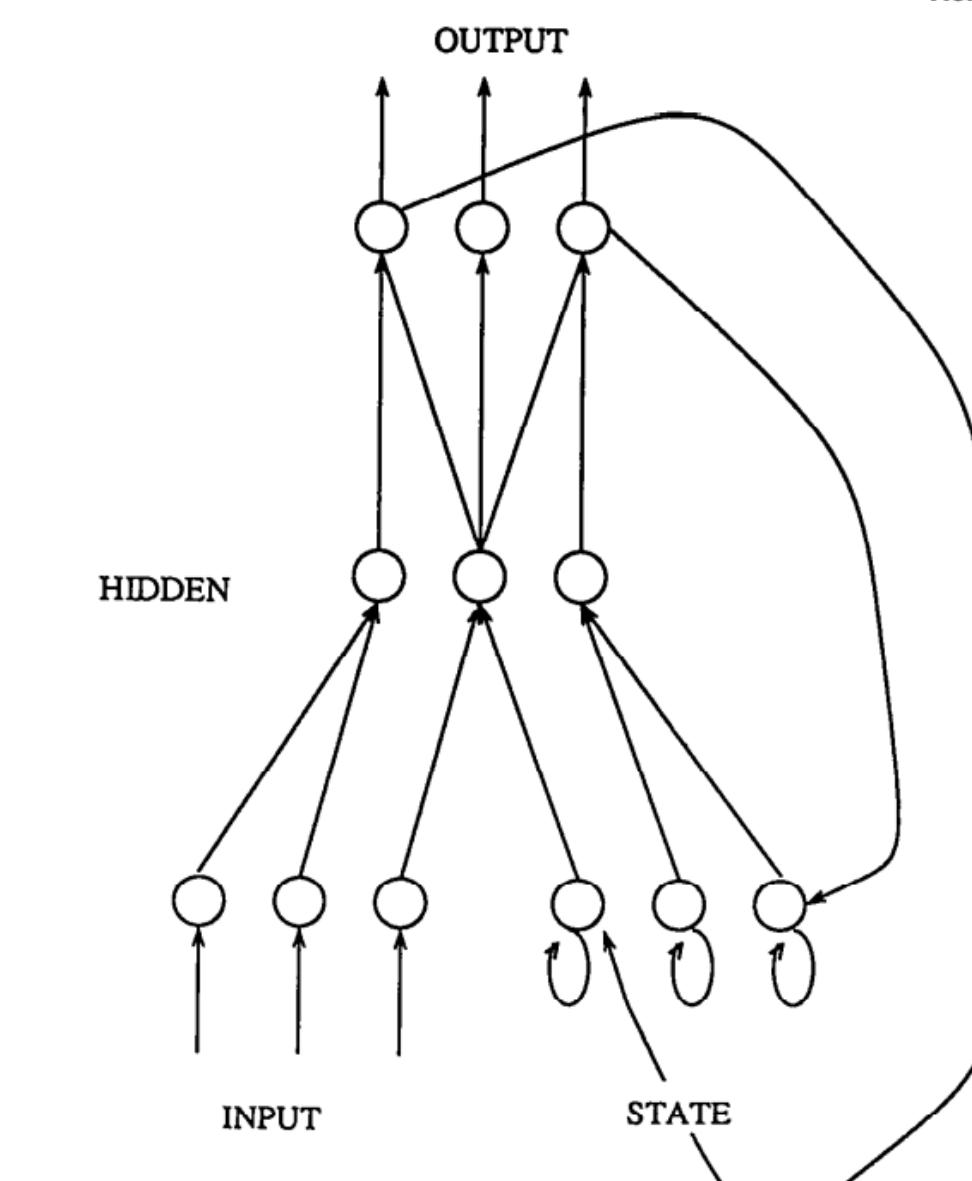


Synthesis?

ALCOVE
(Kruschke, 1992)



Semantic Cognition Network
(Rogers & McClelland, 2003)



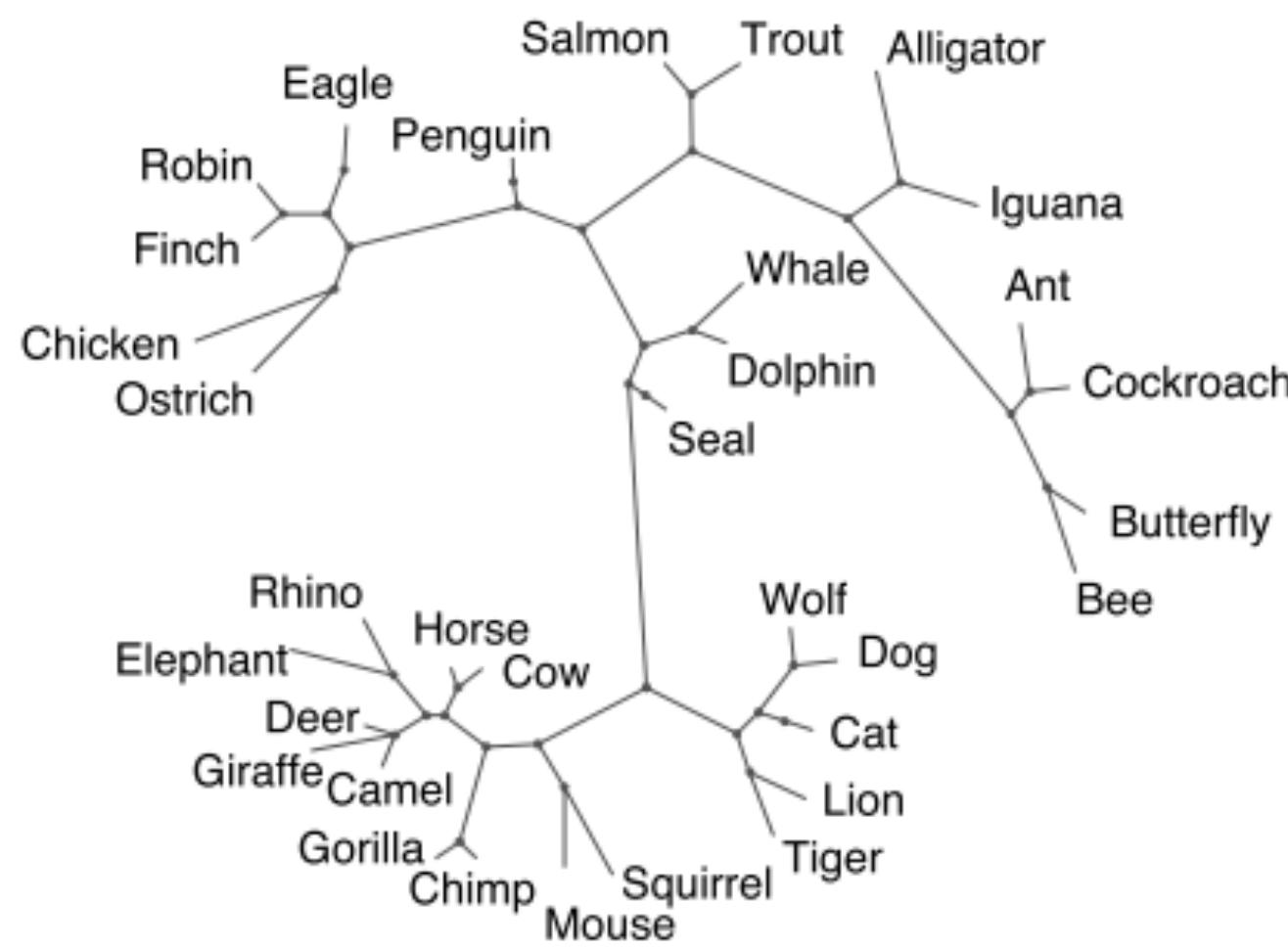
Finding Structure in Time
(Elman, 1990)

Prior work: Integrating structure and statistics

Bayes' rule: $P(\text{structure} \mid \text{data}) \propto P(\text{structure})P(\text{data} \mid \text{structure})$

Structural Forms

(Kemp & Tenenbaum, 2008)



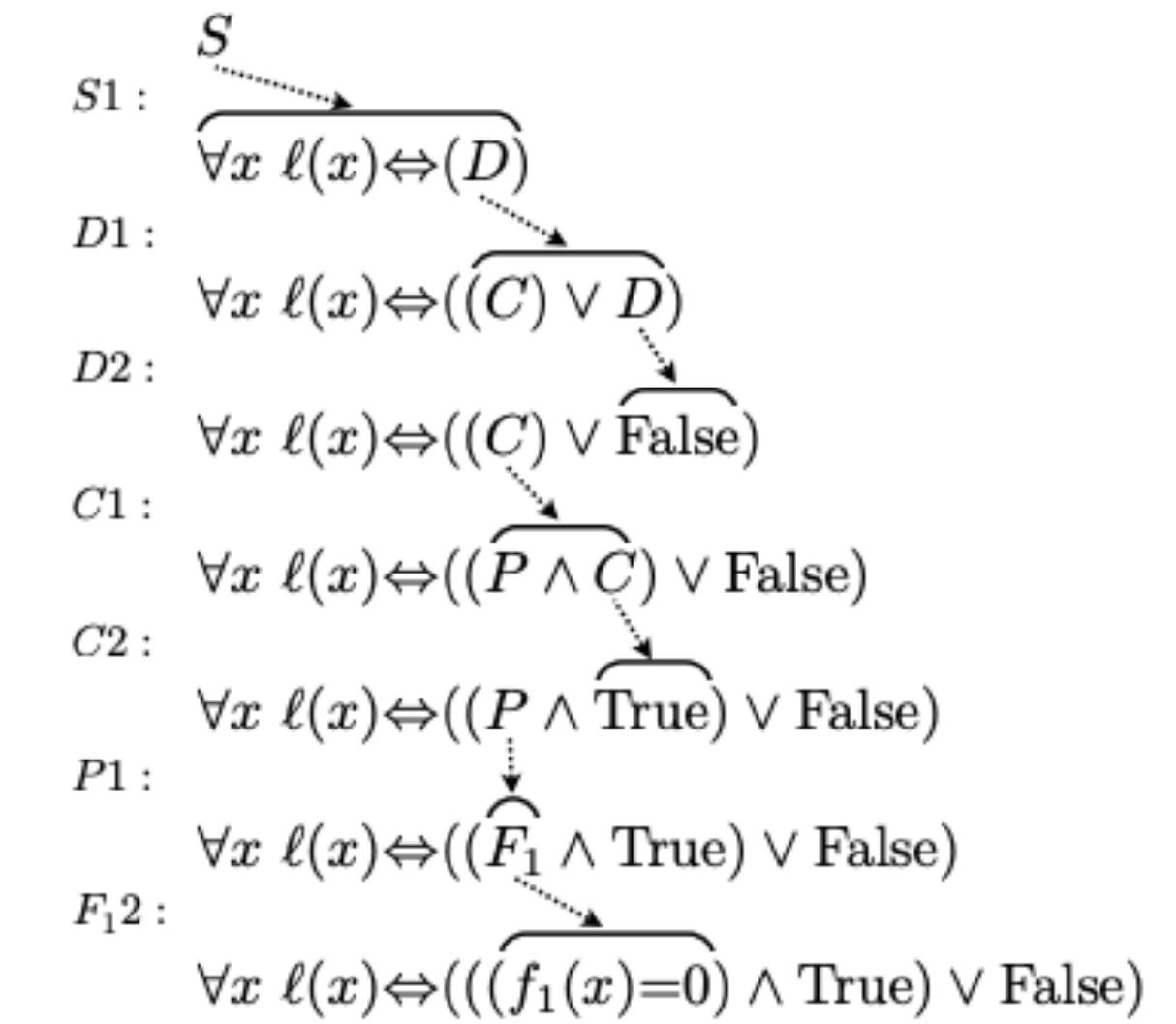
Bayesian Program Learning (Lake et al., 2015)

```

procedure GENERATETYPE
   $\kappa \leftarrow P(\kappa)$                                  $\triangleright$  Sample number of parts
  for  $i = 1 \dots \kappa$  do
     $n_i \leftarrow P(n_i|\kappa)$                        $\triangleright$  Sample number of sub-parts
    for  $j = 1 \dots n_i$  do
       $s_{ij} \leftarrow P(s_{ij}|s_{i(j-1)})$   $\triangleright$  Sample sub-part sequence
    end for
     $R_i \leftarrow P(R_i|S_1, \dots, S_{i-1})$            $\triangleright$  Sample relation
  end for
   $\psi \leftarrow \{\kappa, R, S\}$ 
  return @GENERATETOKEN( $\psi$ )       $\triangleright$  Return program

```

Rational Rules (Goodman et al., 2008)



Proposal: Generative Neuro-Symbolic (GNS) modeling

procedure GENERATEEXAMPLE

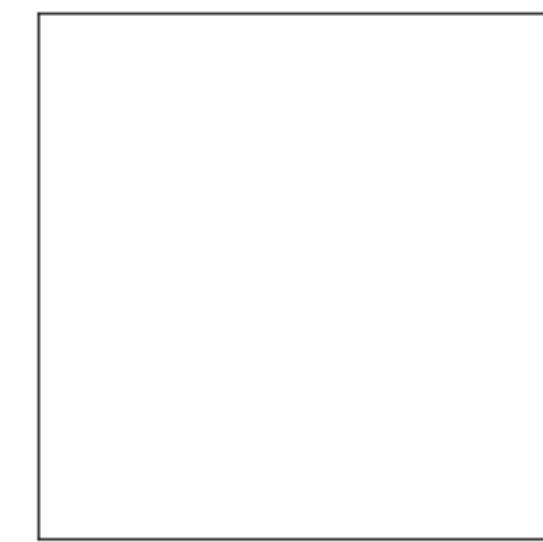
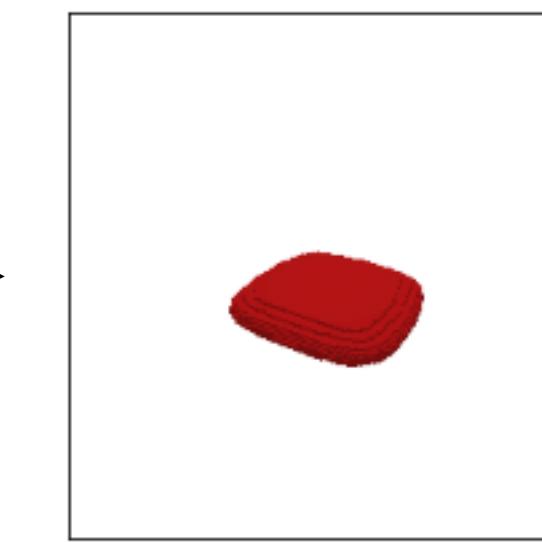
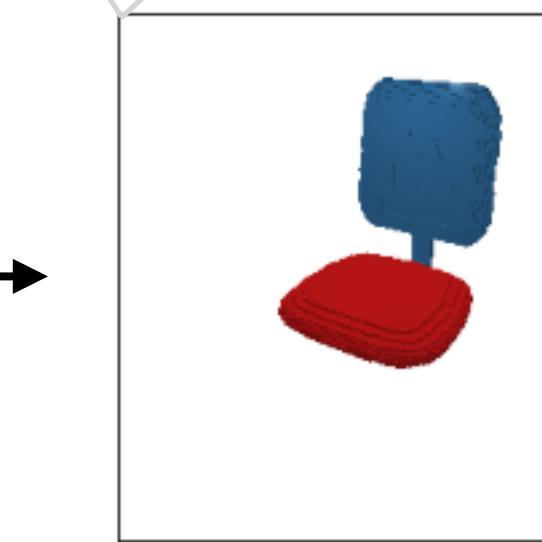
```

 $C \leftarrow 0$                                  $\triangleright$  Initialize blank canvas
for  $i = 1 \dots, \infty$  do
     $x_i \leftarrow \text{GENERATEPART}(C)$            $\triangleright$  Sample part
     $r_i \leftarrow \text{GENERATERELATION}(C, x_i)$      $\triangleright$  Sample relation
     $C \leftarrow \text{RENDER}(C, x_i, r_i)$            $\triangleright$  Render new canvas
    if TERMINATE?( $C$ ) then                   $\triangleright$  Sample termination (y/n)
        break
return  $C$                                  $\triangleright$  Return example

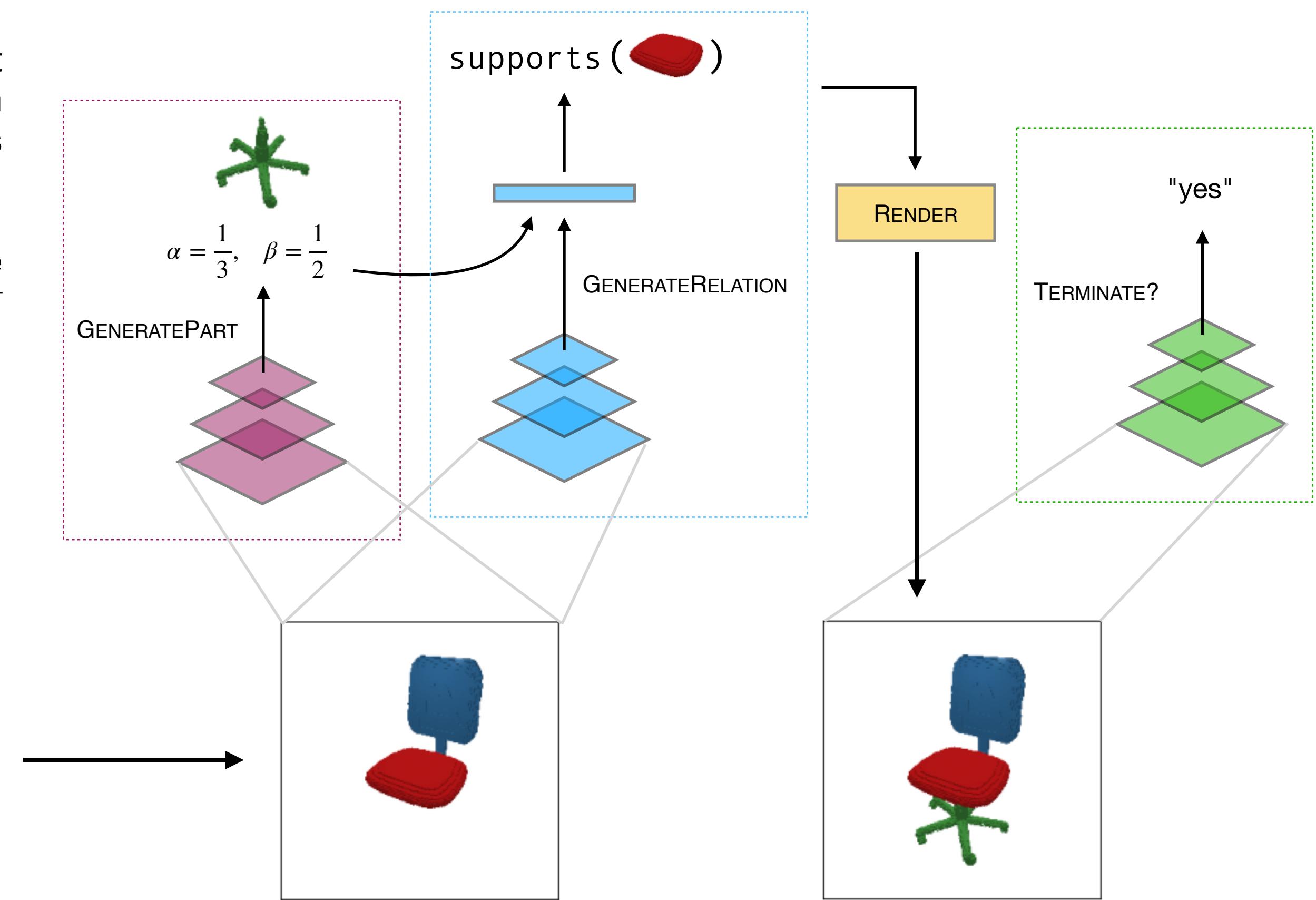
```

Canvas:

C



New example



Agenda

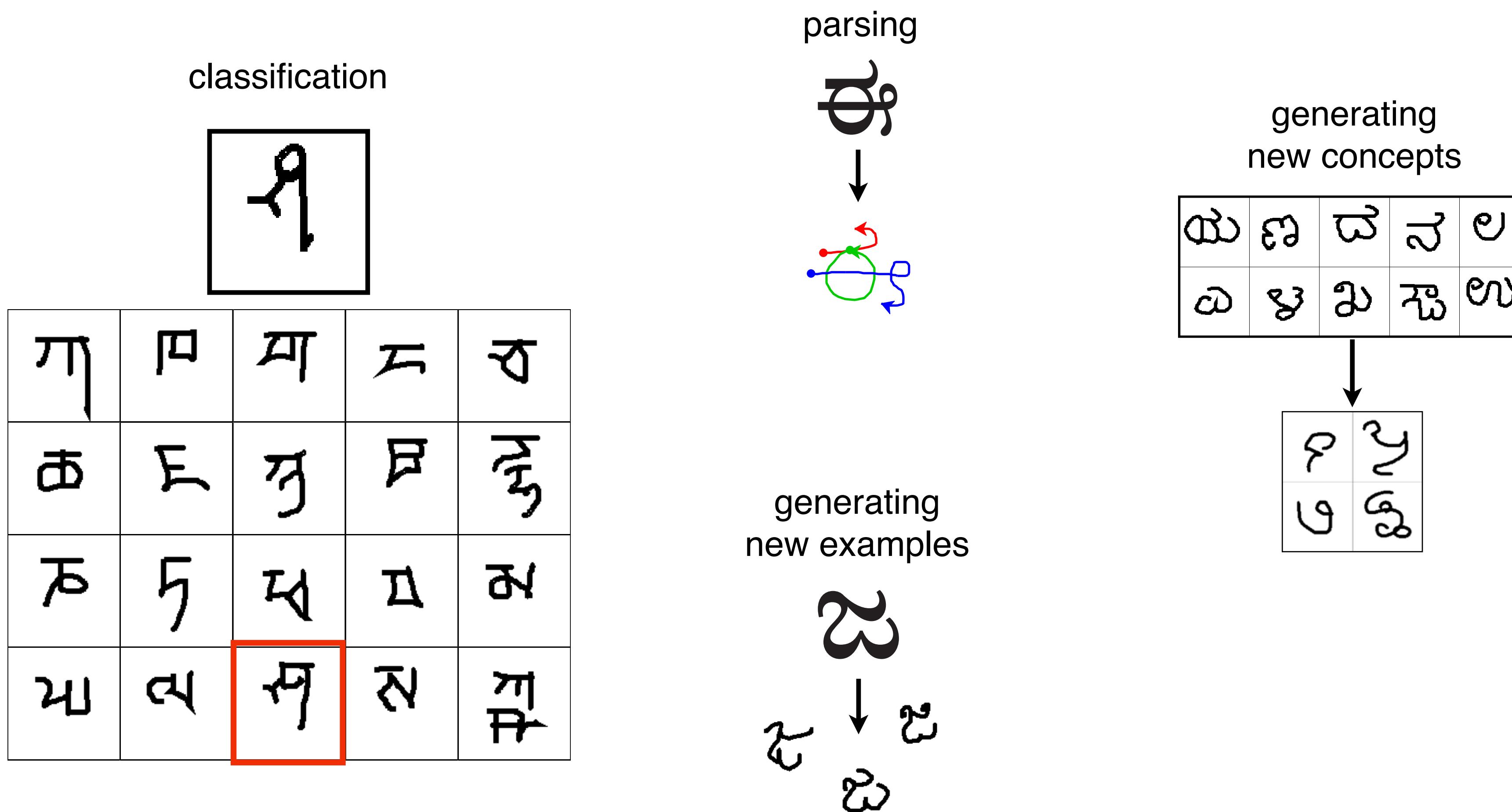
- Case study #1: handwritten characters
- Case study #2: structured visual concepts ("alien figures")
- Additional projects
- Summary & conclusions

Case study #1: handwritten characters

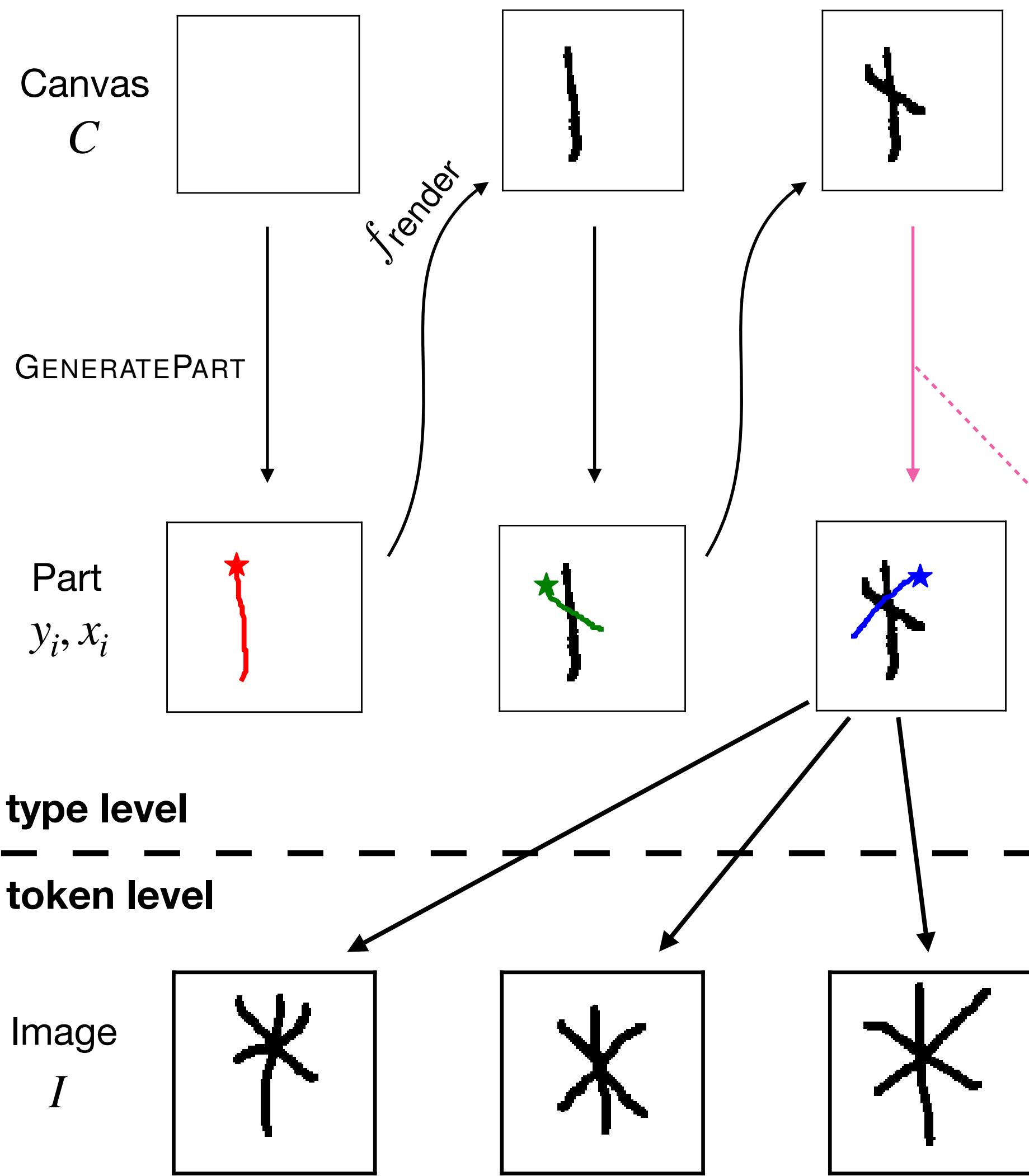
(Lake et al., 2015)

The Omniglot Challenge

(Lake et al., 2015)



GNS model of character concepts



procedure GENERATETYPE

$C \leftarrow 0$

while *true* **do**

$[y_i, x_i] \leftarrow \text{GENERATEPART}(C)$

$C \leftarrow f_{\text{render}}(y_i, x_i, C)$

$v_i \sim p(v \mid C)$

if v_i **then**

break

$\psi \leftarrow \{\kappa, y_{1:\kappa}, x_{1:\kappa}\}$

return ψ

▷ Initialize blank image canvas

▷ Sample part location & parameters

▷ Render part to image canvas

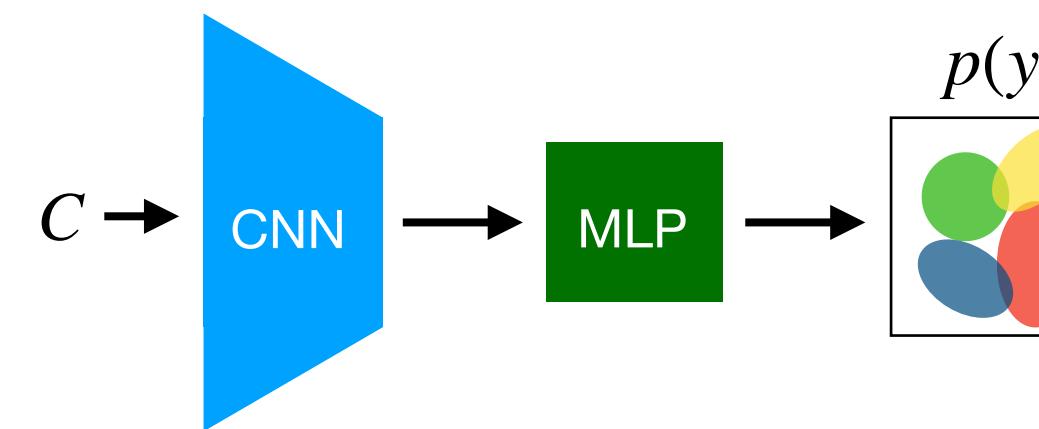
▷ Sample termination indicator

▷ Terminate sample

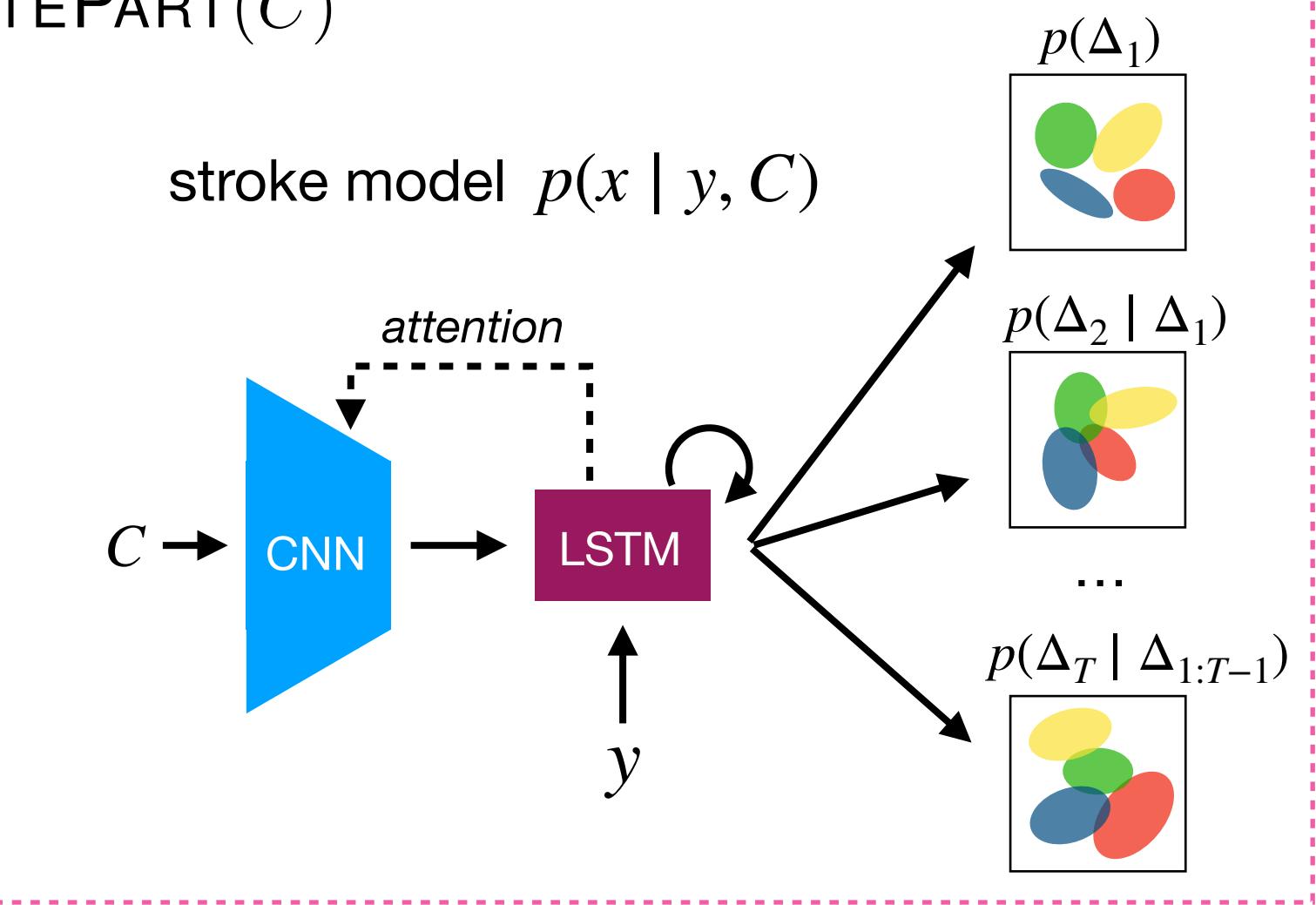
▷ Return concept type

GENERATEPART(C)

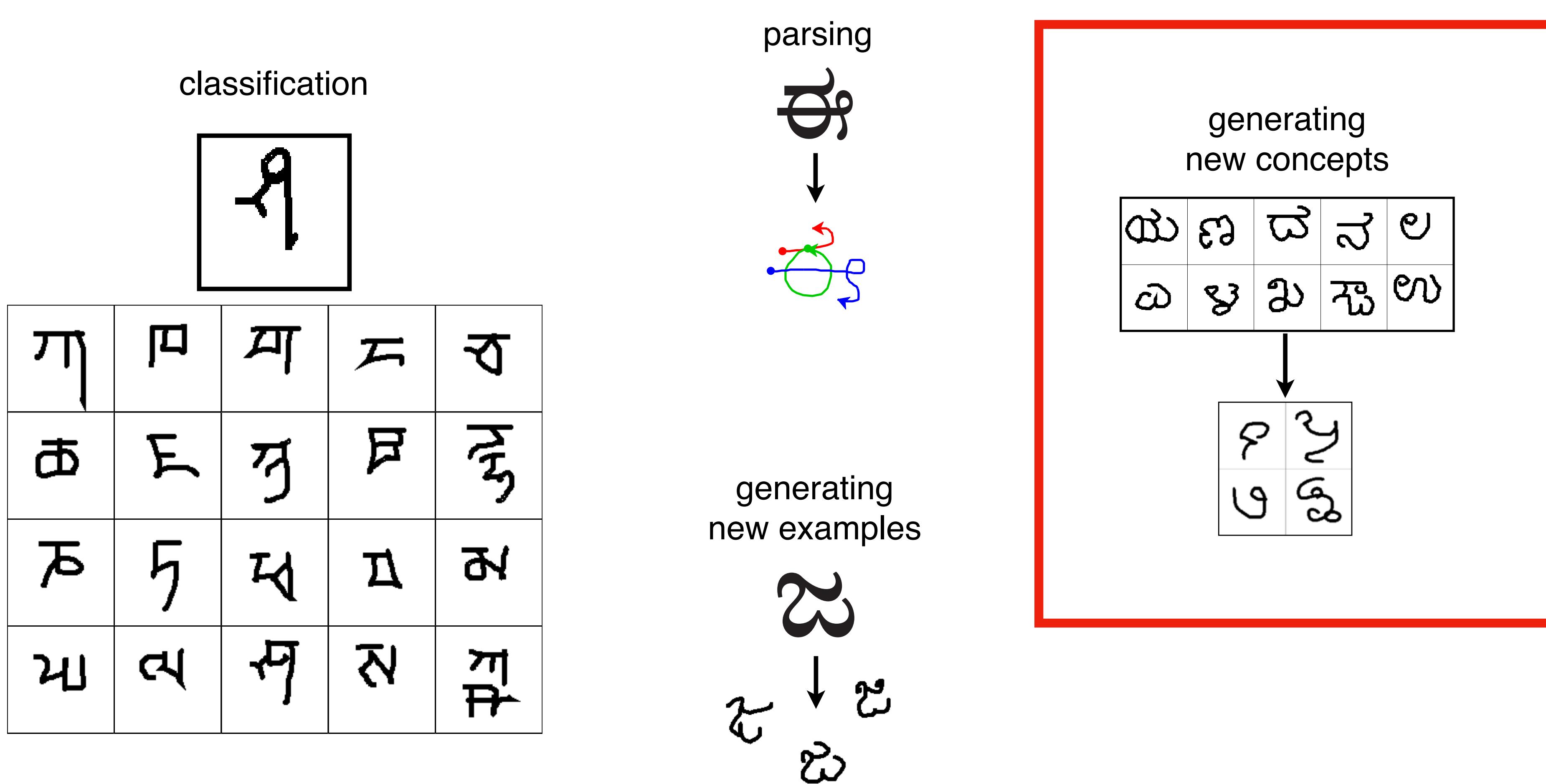
location model $p(y \mid C)$



stroke model $p(x \mid y, C)$



The Omniglot Challenge



Generating new concepts

```
procedure GENERATETYPE
```

1. Log-likelihoods (LL) of held-out concepts

Test loss per drawing trajectory

GNS	-19.51
H-LSTM	-20.16
LSTM	-19.66

Replicates across different train/test splits

Approximate test LL per pixel image

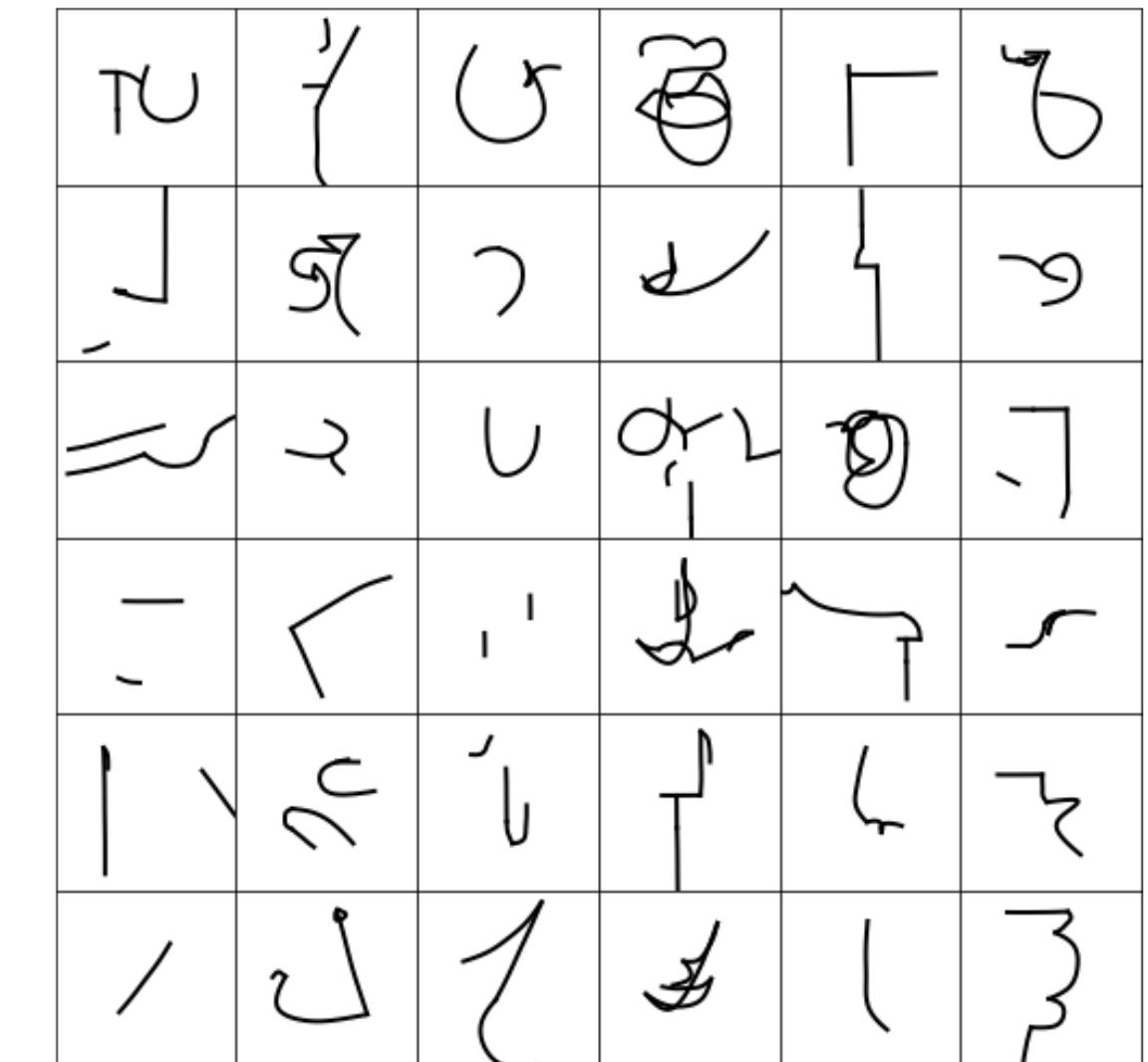
GNS	-383.67
VHE	-546.84
SG	-861.05

2. Model samples

Omniglot

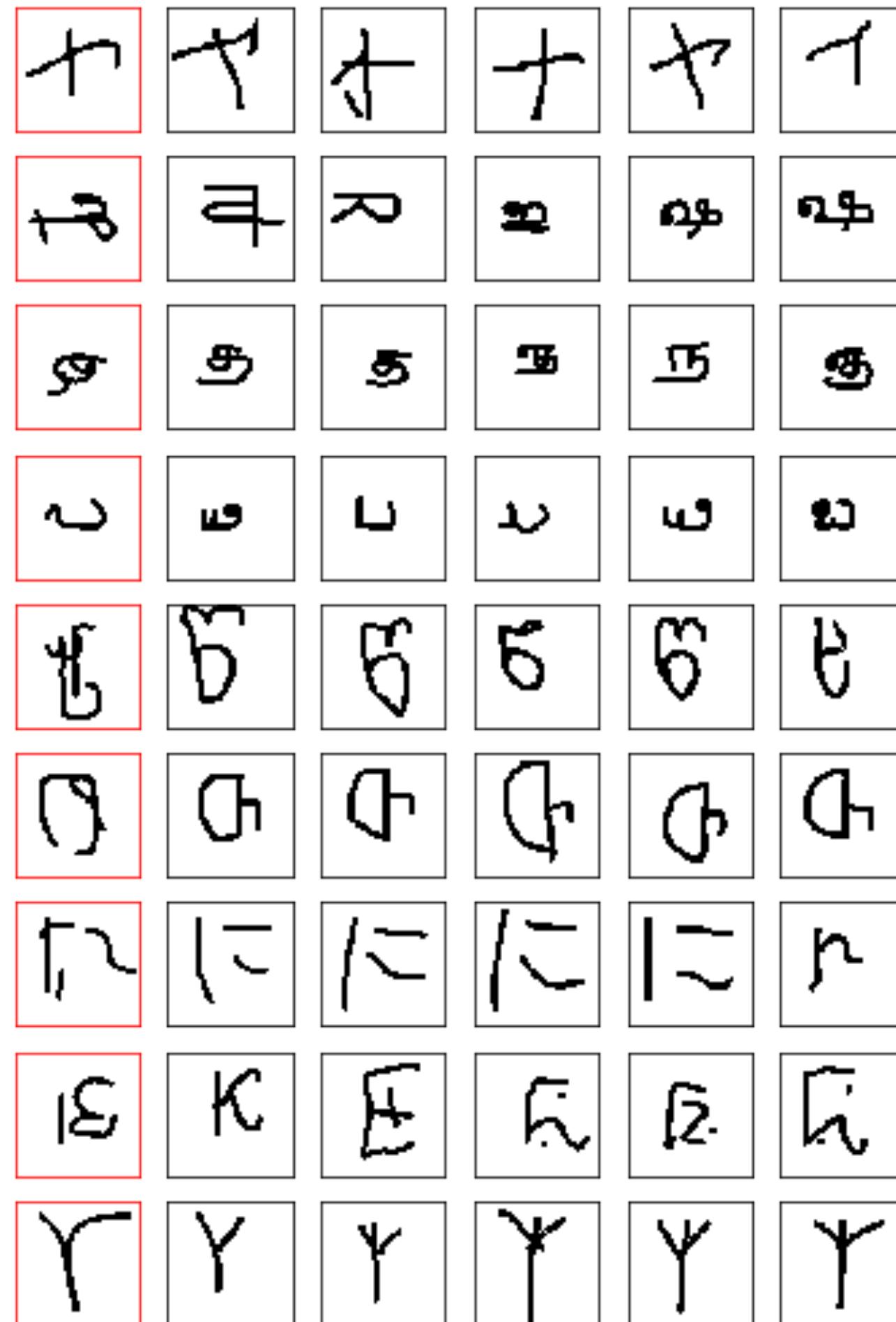
GNS model

fully-symbolic model (BPL)



Generating new concepts

GNS **Nearest neighbors**

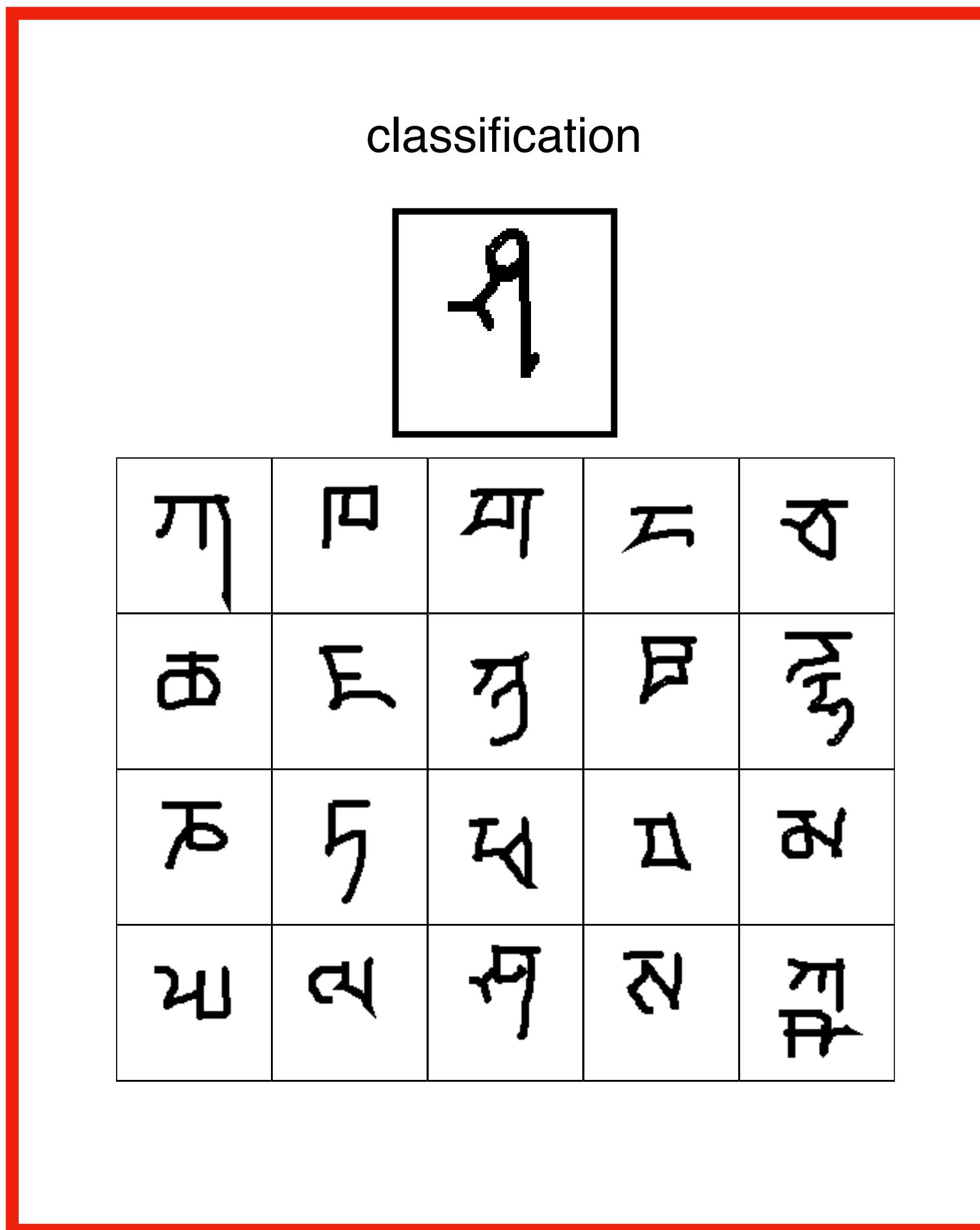


GNS samples

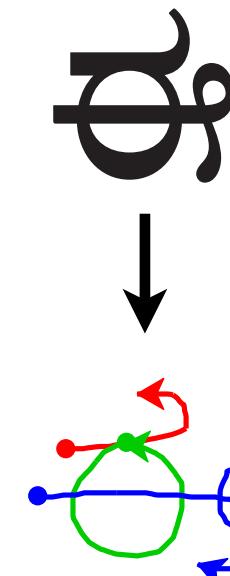
Nearest neighbors

Nearest neighbors are located using the embedding of a convolutional neural network (CNN)

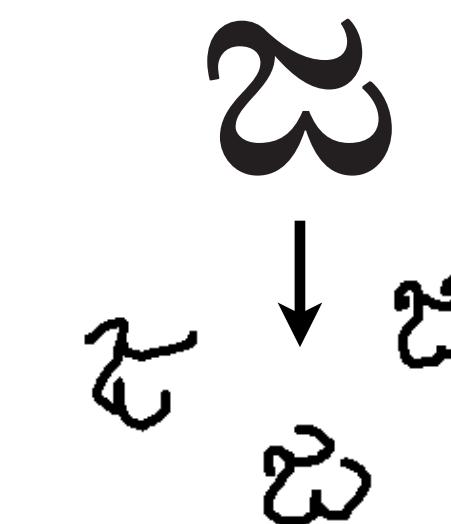
The Omniglot Challenge



parsing



generating
new examples

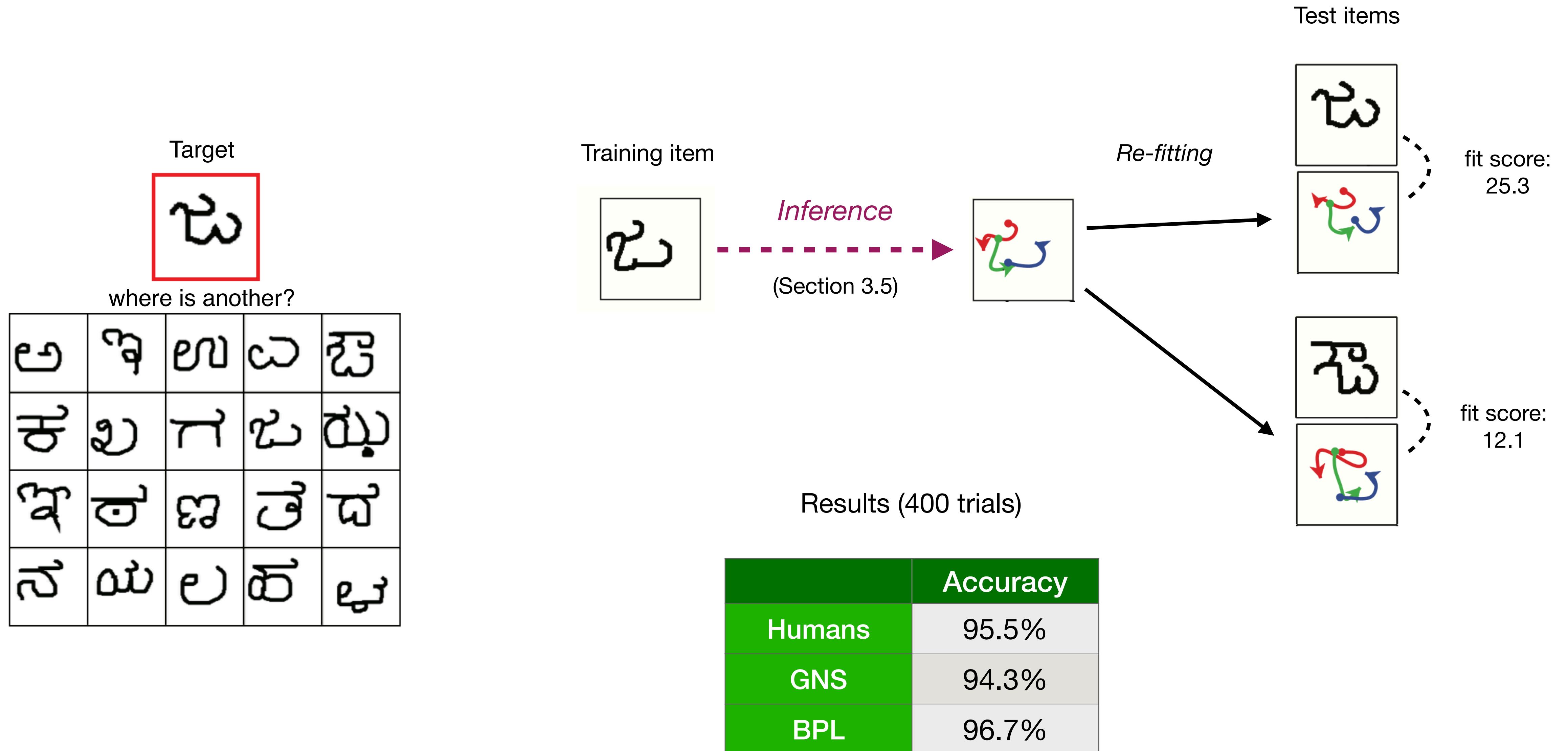


generating
new concepts

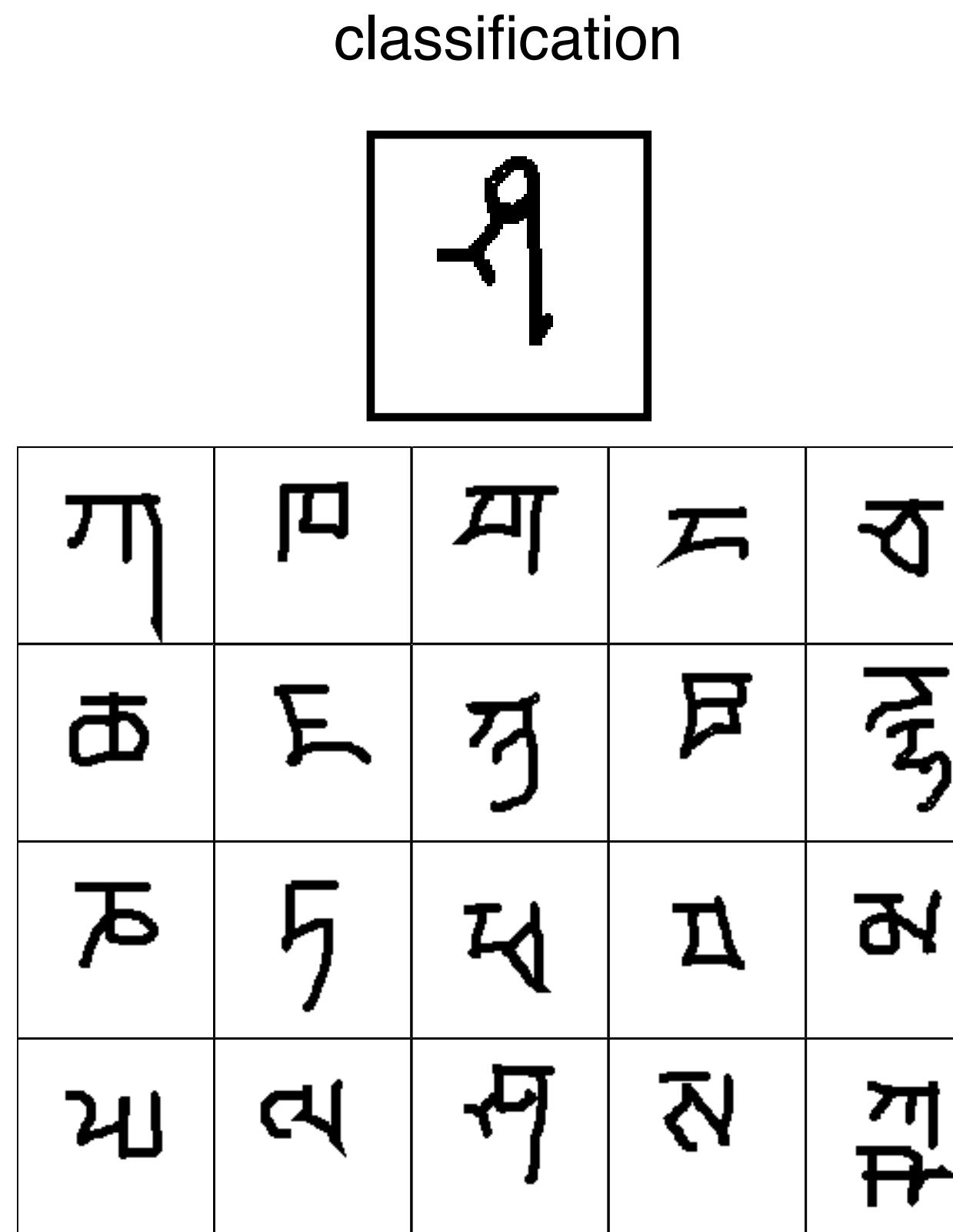
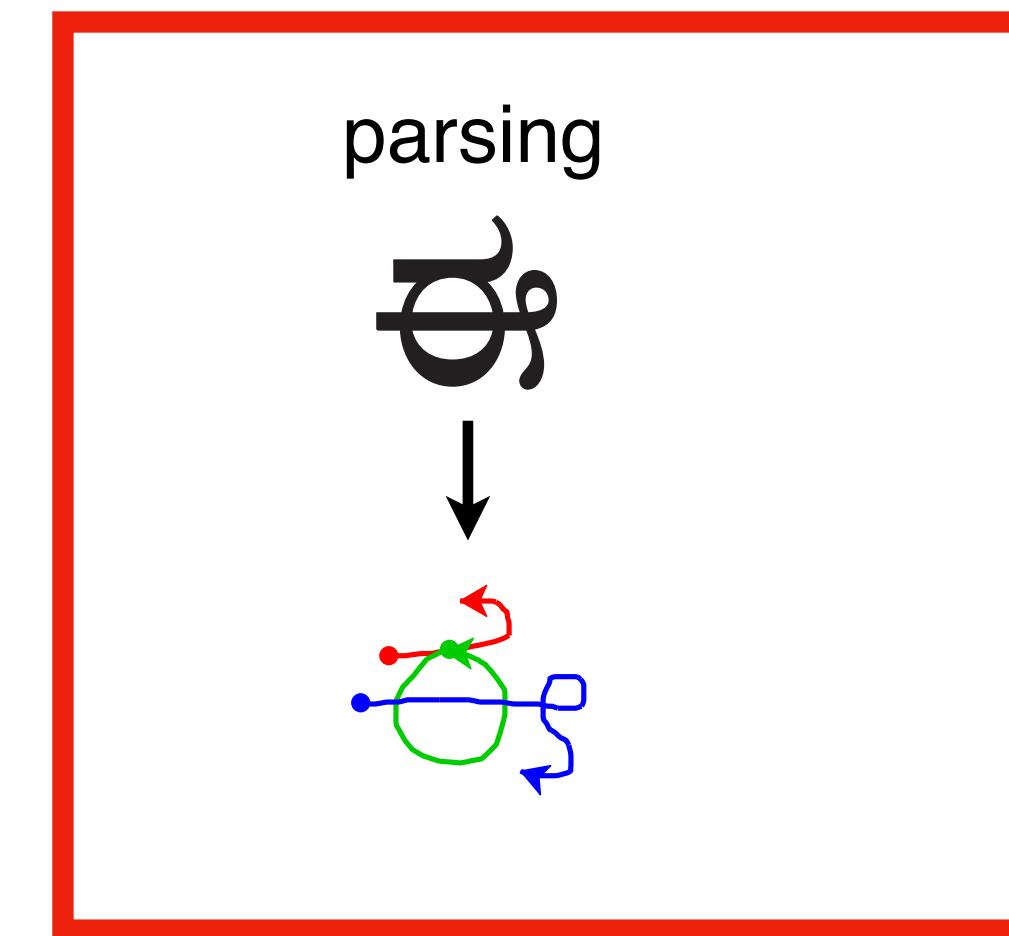
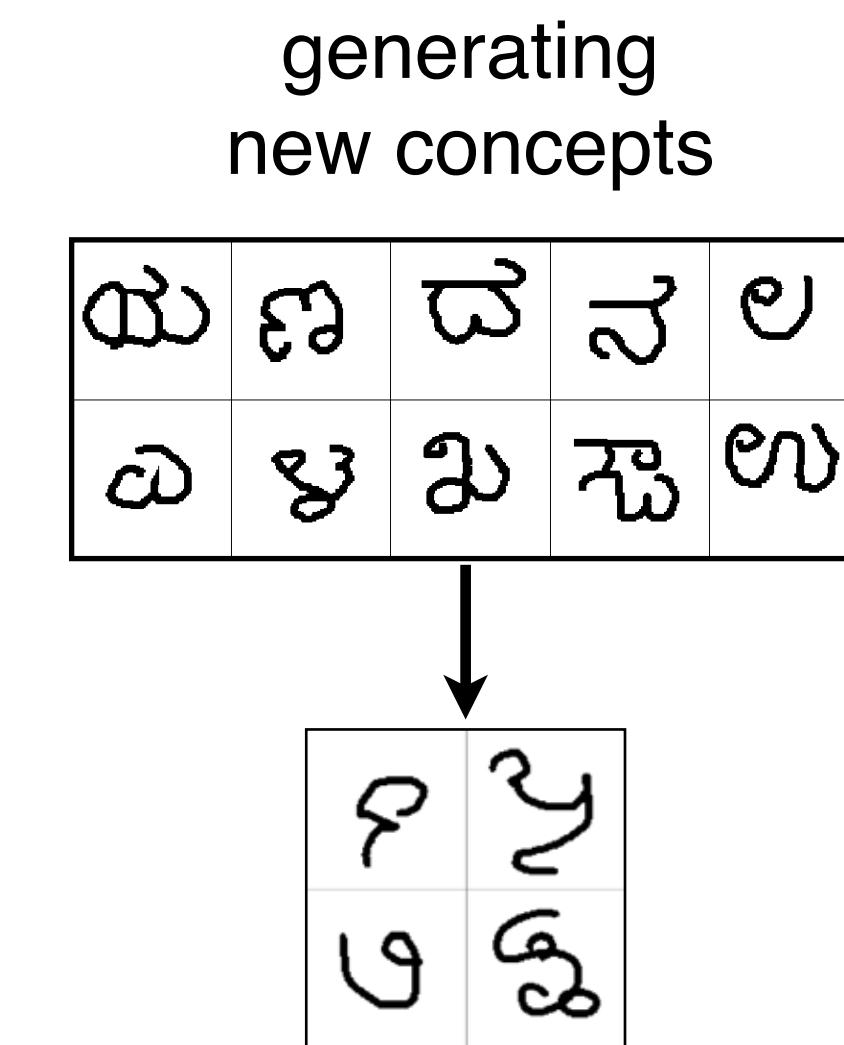
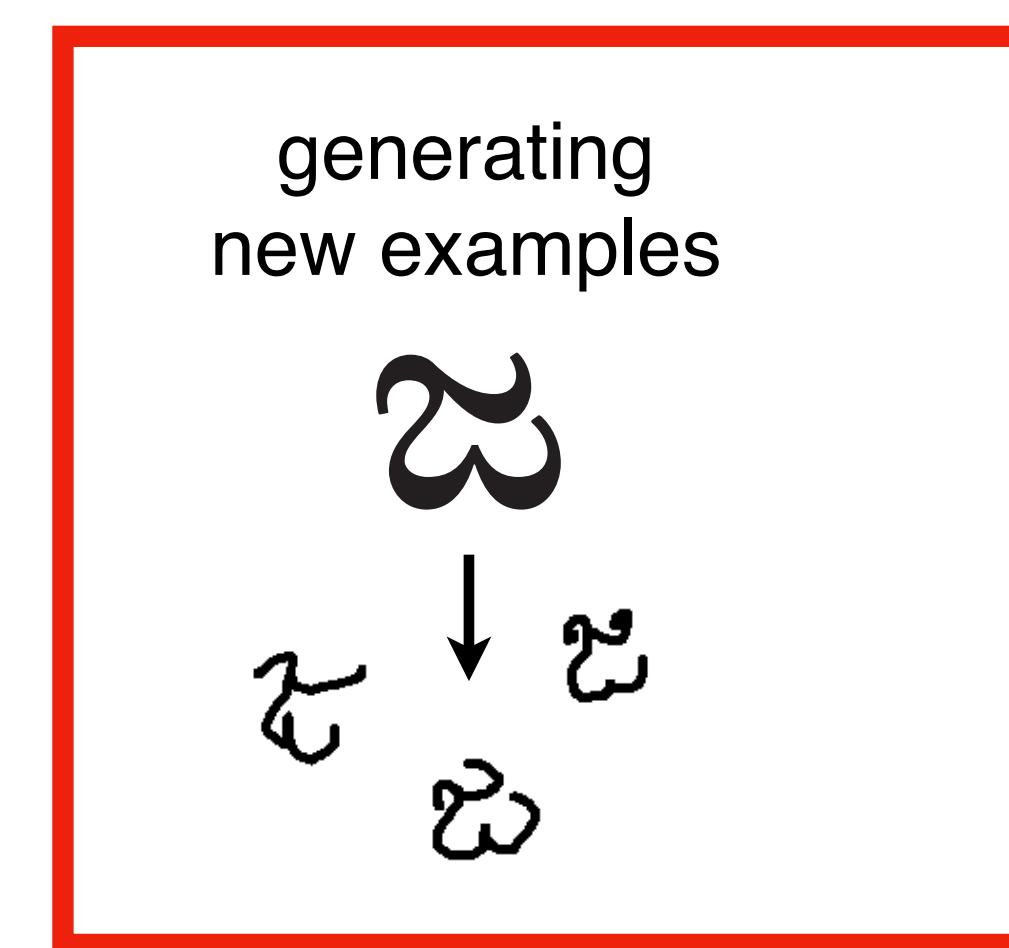
ଯ	ଣ	ଦ	ନ	ଲ
ତ	ପ	ବ	ଶ	ର

ର	ତ
ପ	ଶ

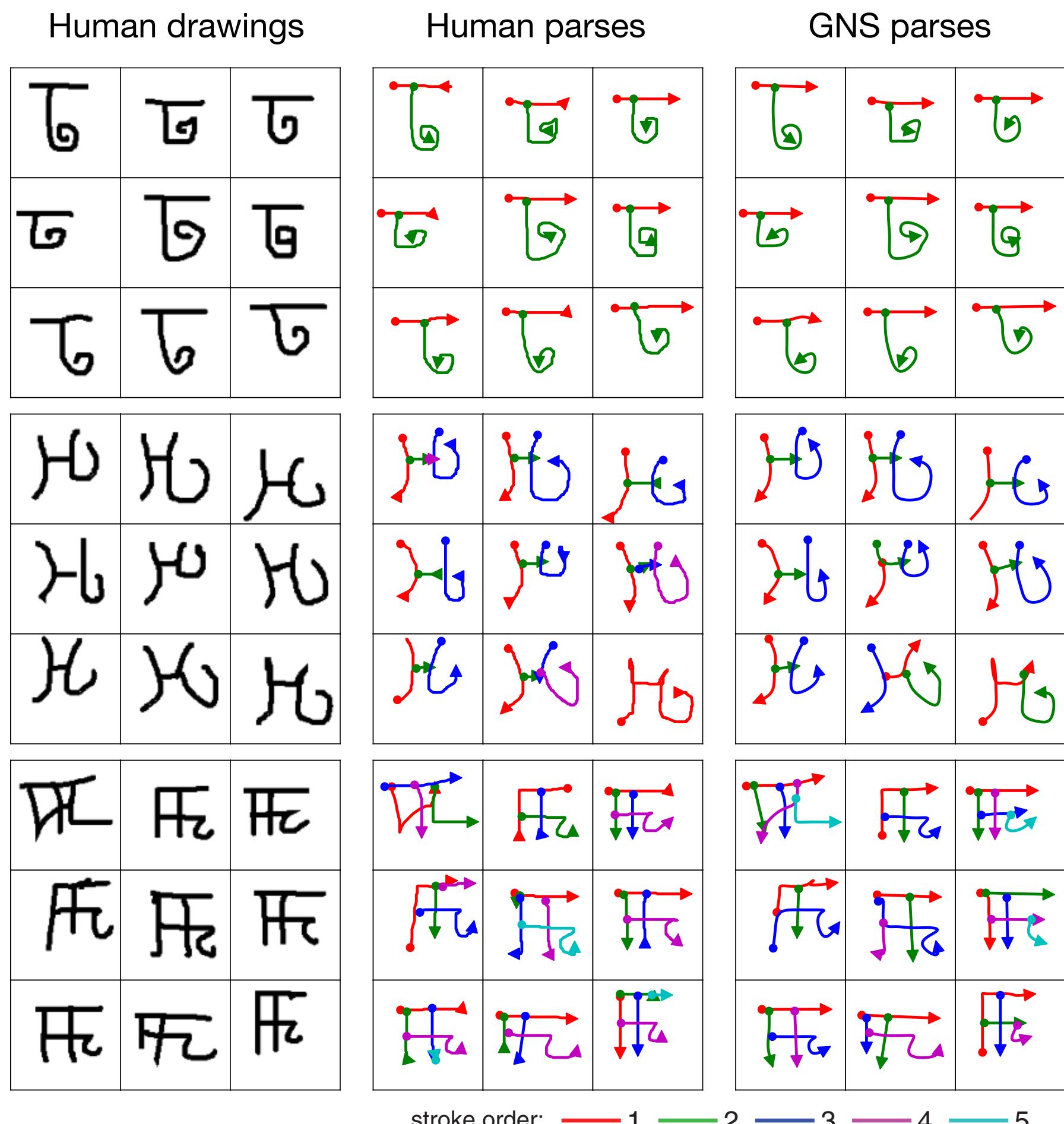
One-Shot Classification



The Omniglot Challenge

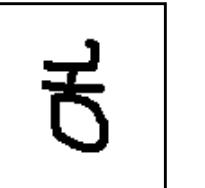
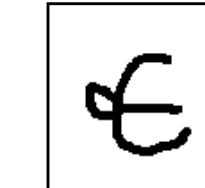
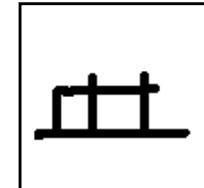
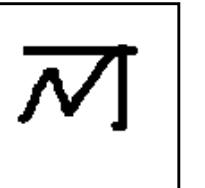
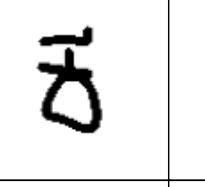
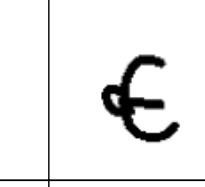
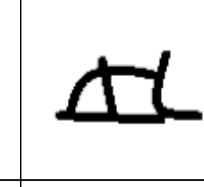
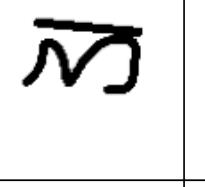
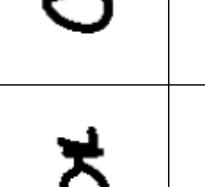
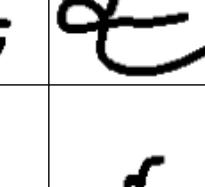
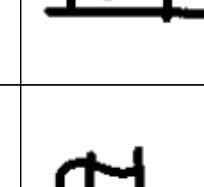
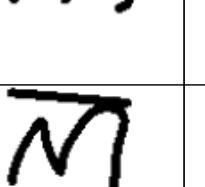
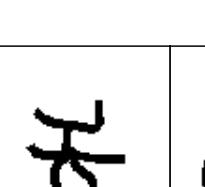
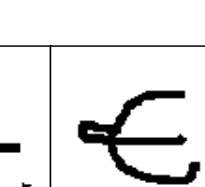
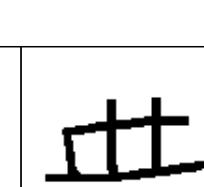
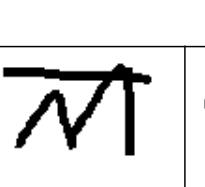
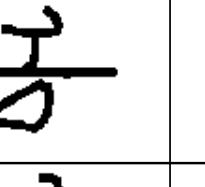
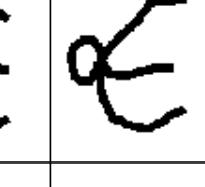
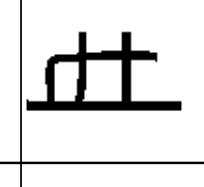
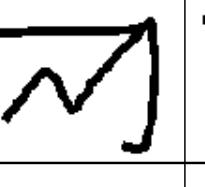


Parsing



Generating new exemplars

Target

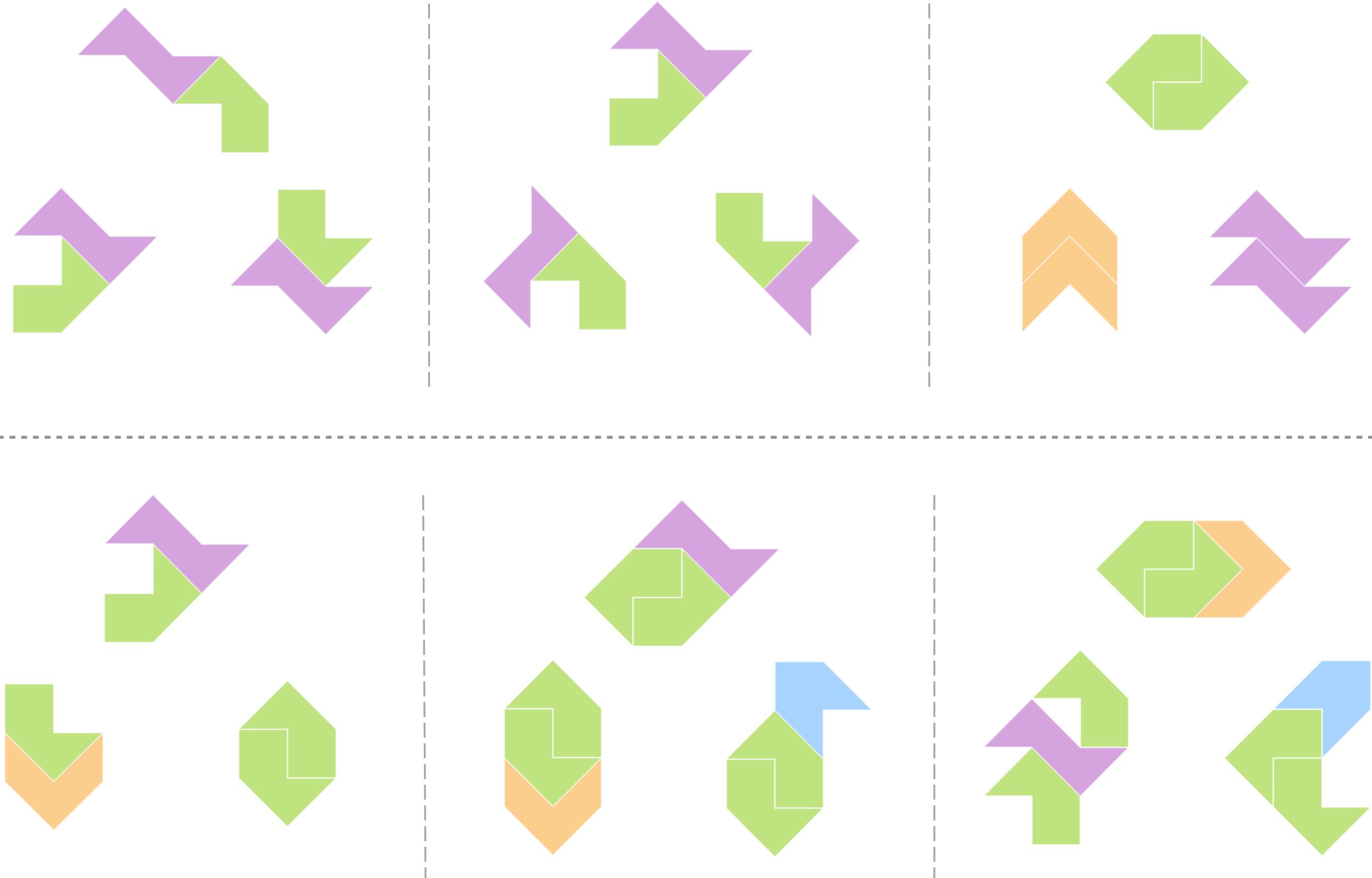
Human

Conclusions: Case study #1

- Humans quickly grasp new concepts and use them in a variety of ways
- Generative Neuro-Symbolic (GNS) models capture the dual structural and statistical components of character concepts and generalize to novel alphabets and a range of tasks
- GNS models offer an account for how previous experience can support the rapid acquisition of new concepts via priors

Case study #2: structured visual concepts ("alien figures")

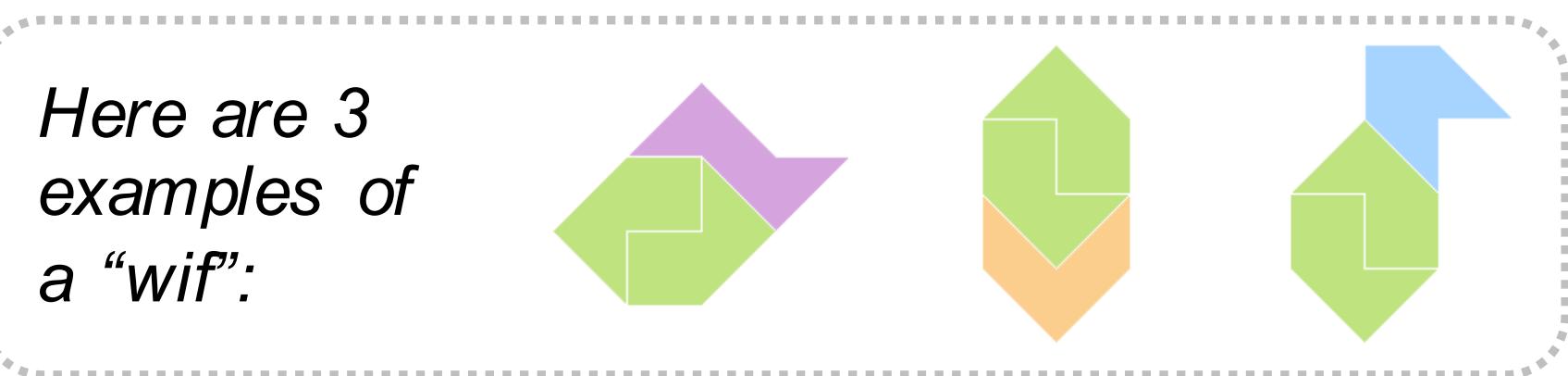
Alien figures



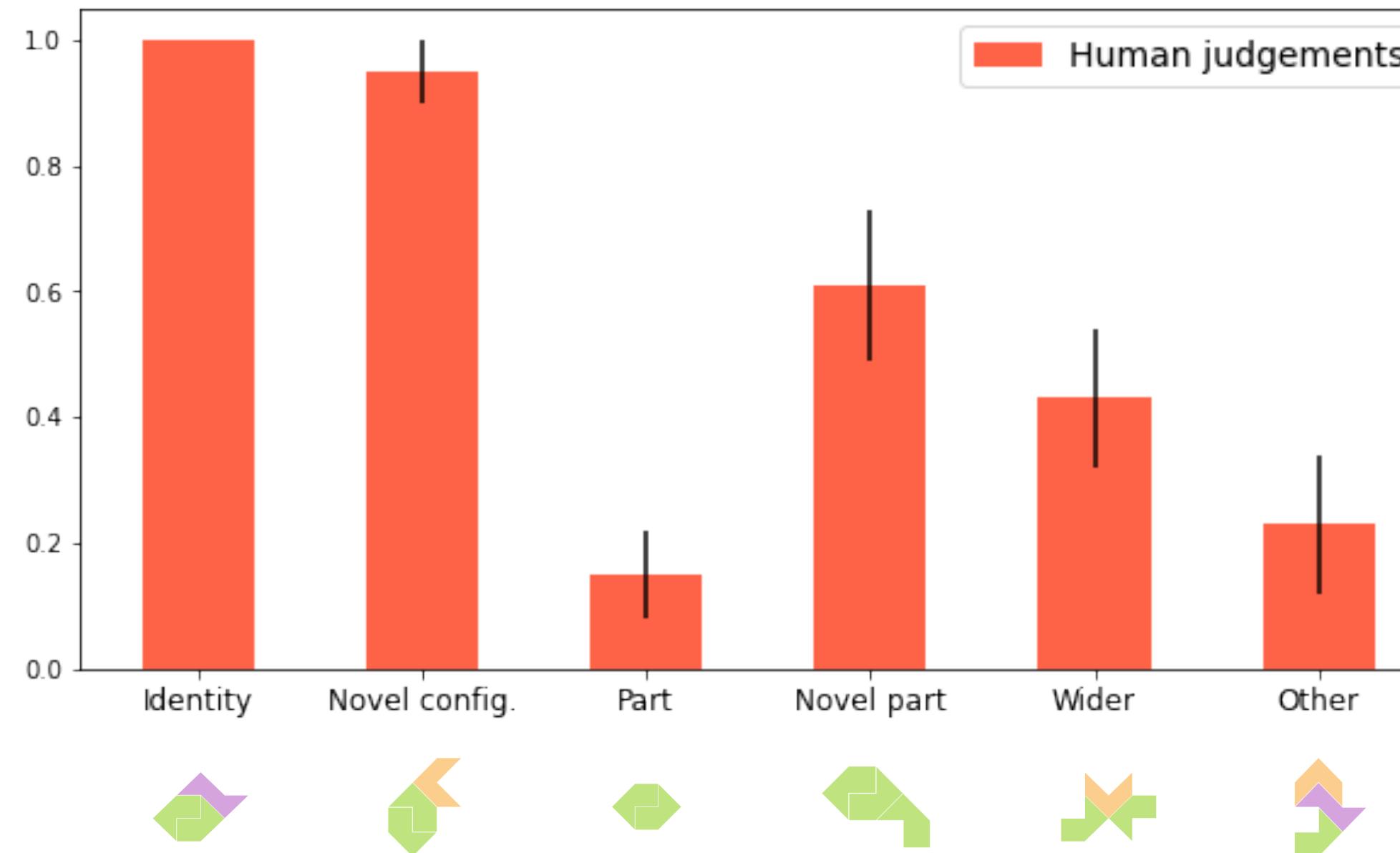
Yanli Zhou

Human experiments

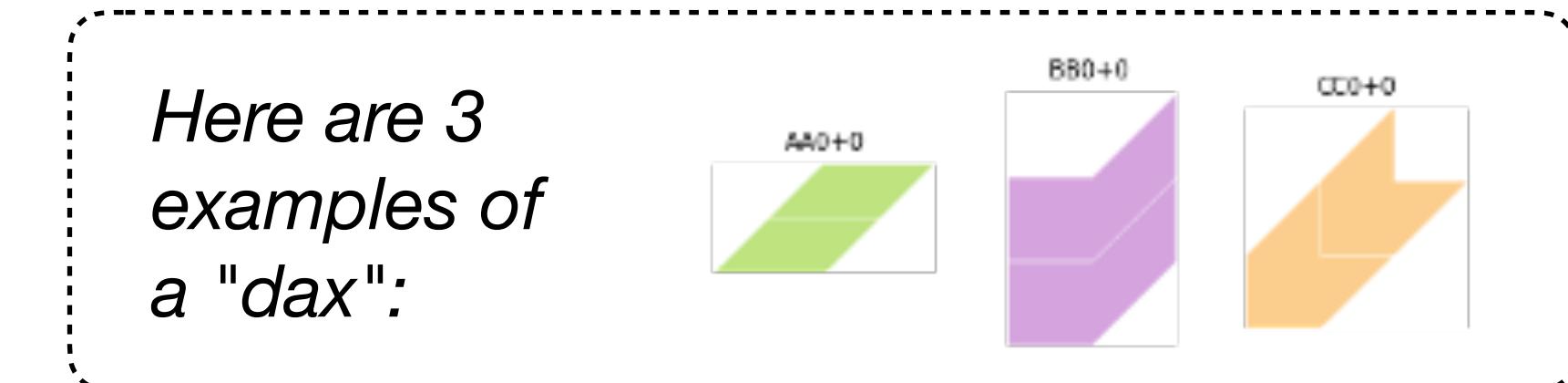
Categorization



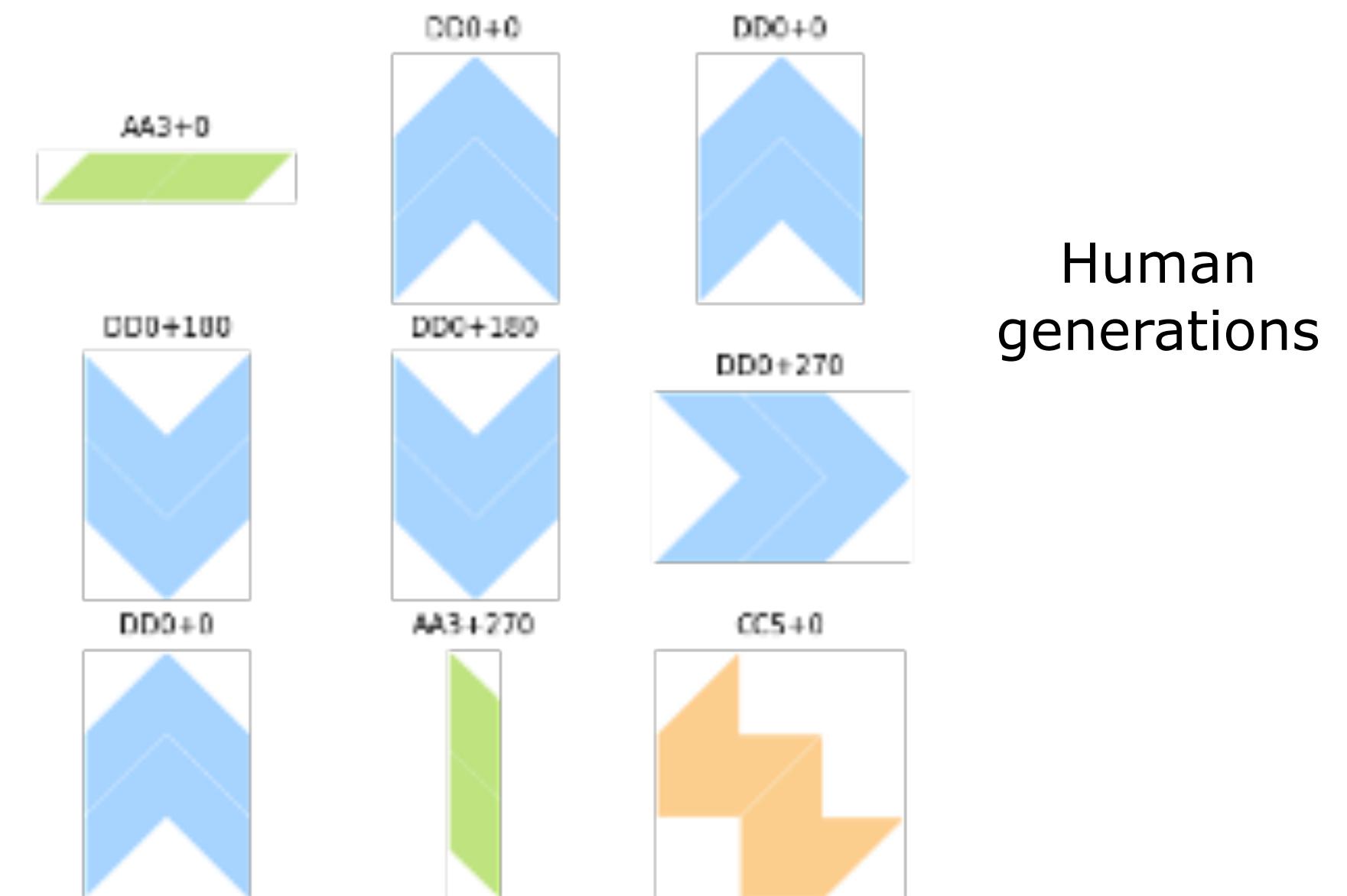
Is this also a "wif"?



Generation

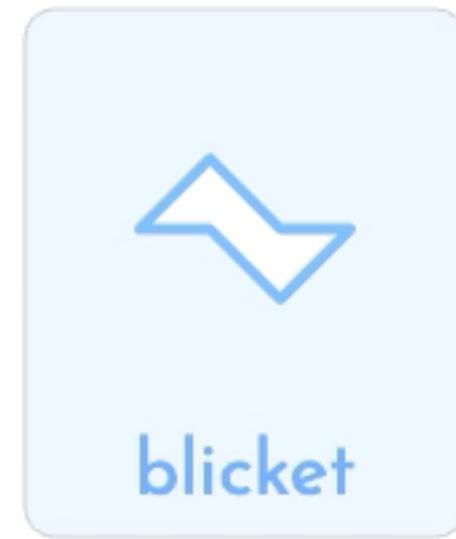
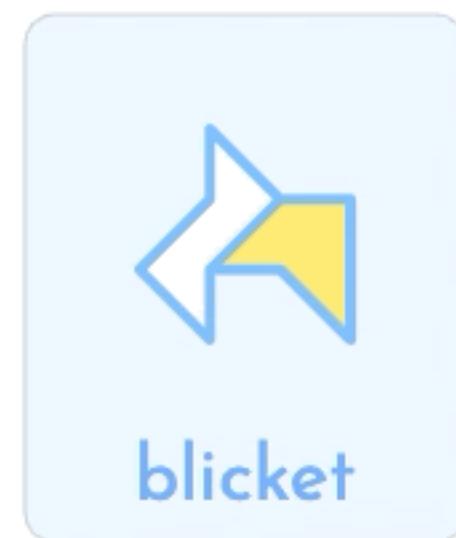
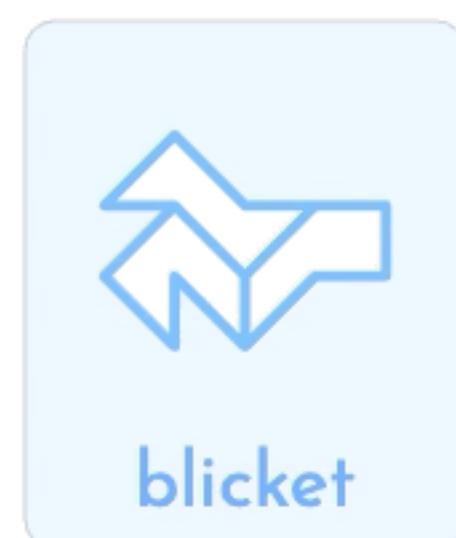
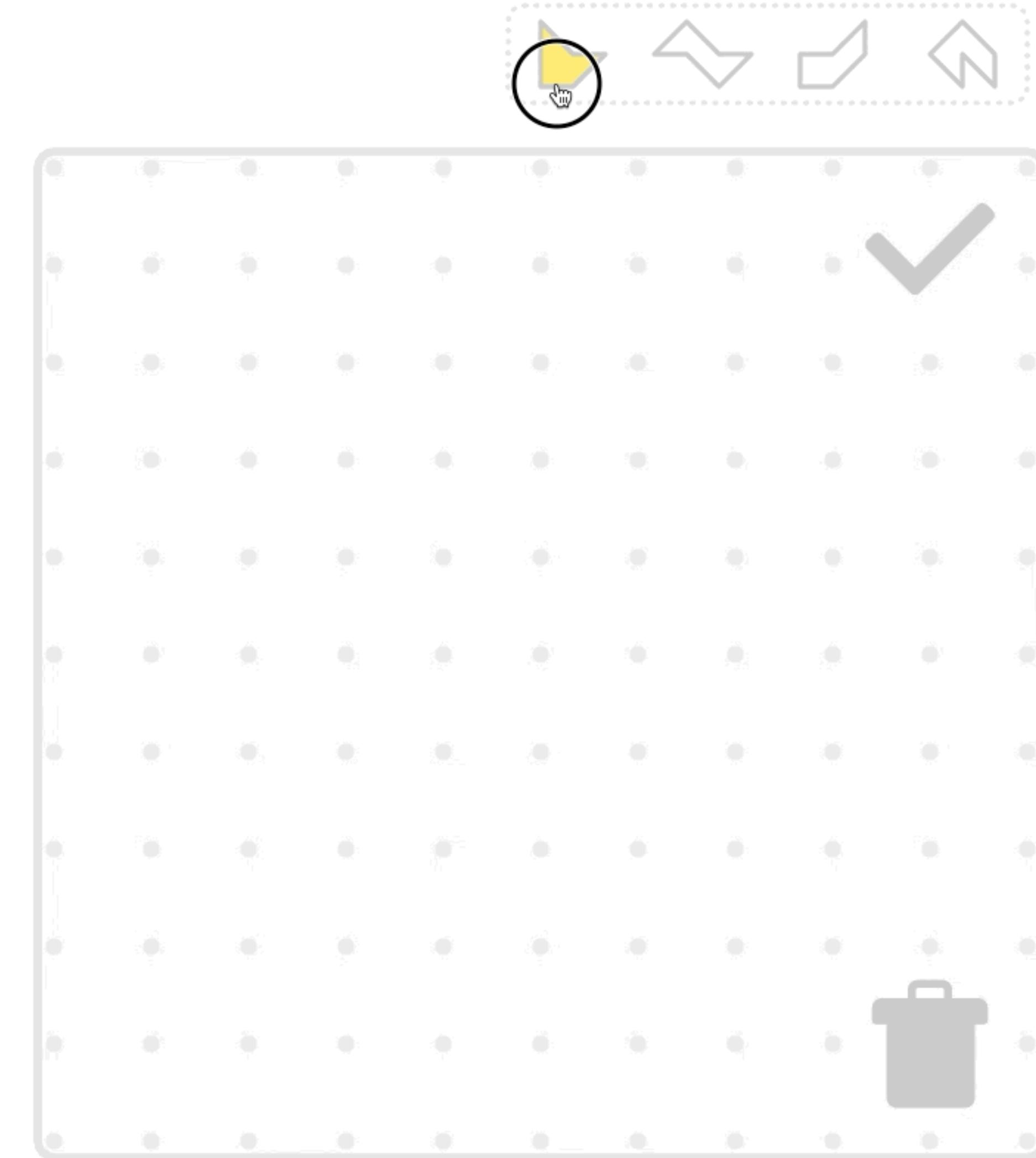


Can you make another "dax"?



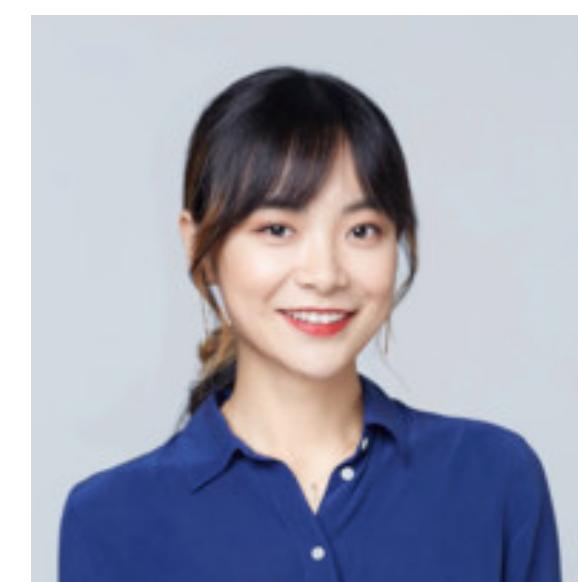
Generation task MTurk interface

Here are 3 examples:

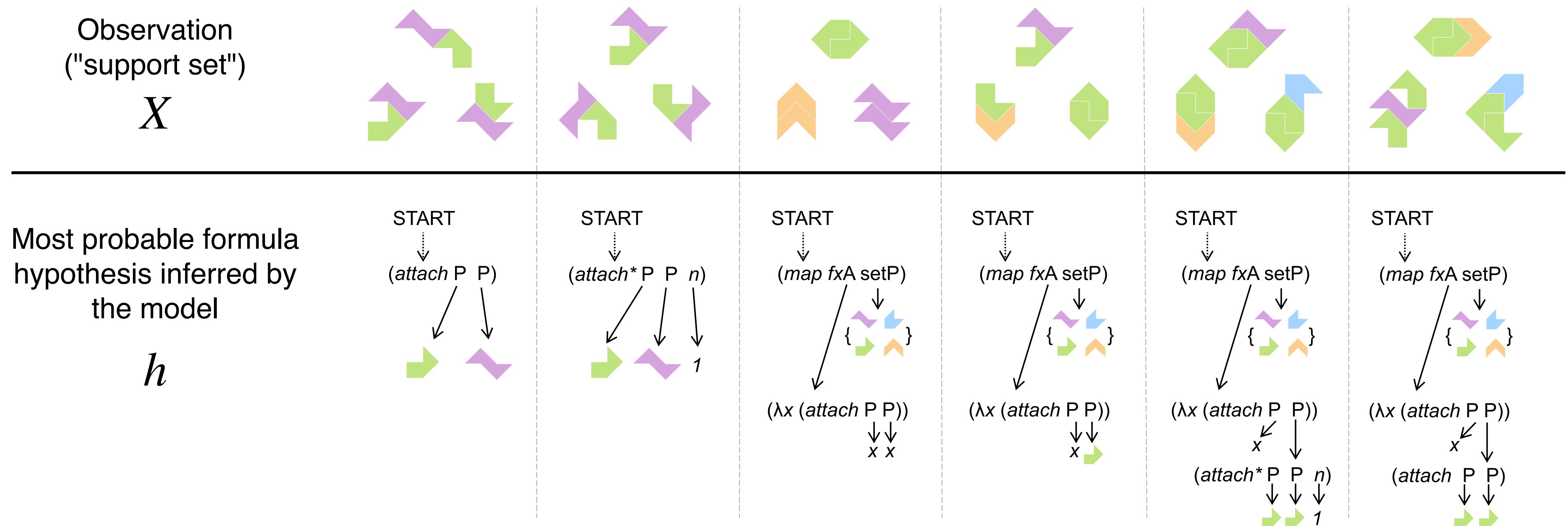


Trial 1/10

Symbolic Bayesian model

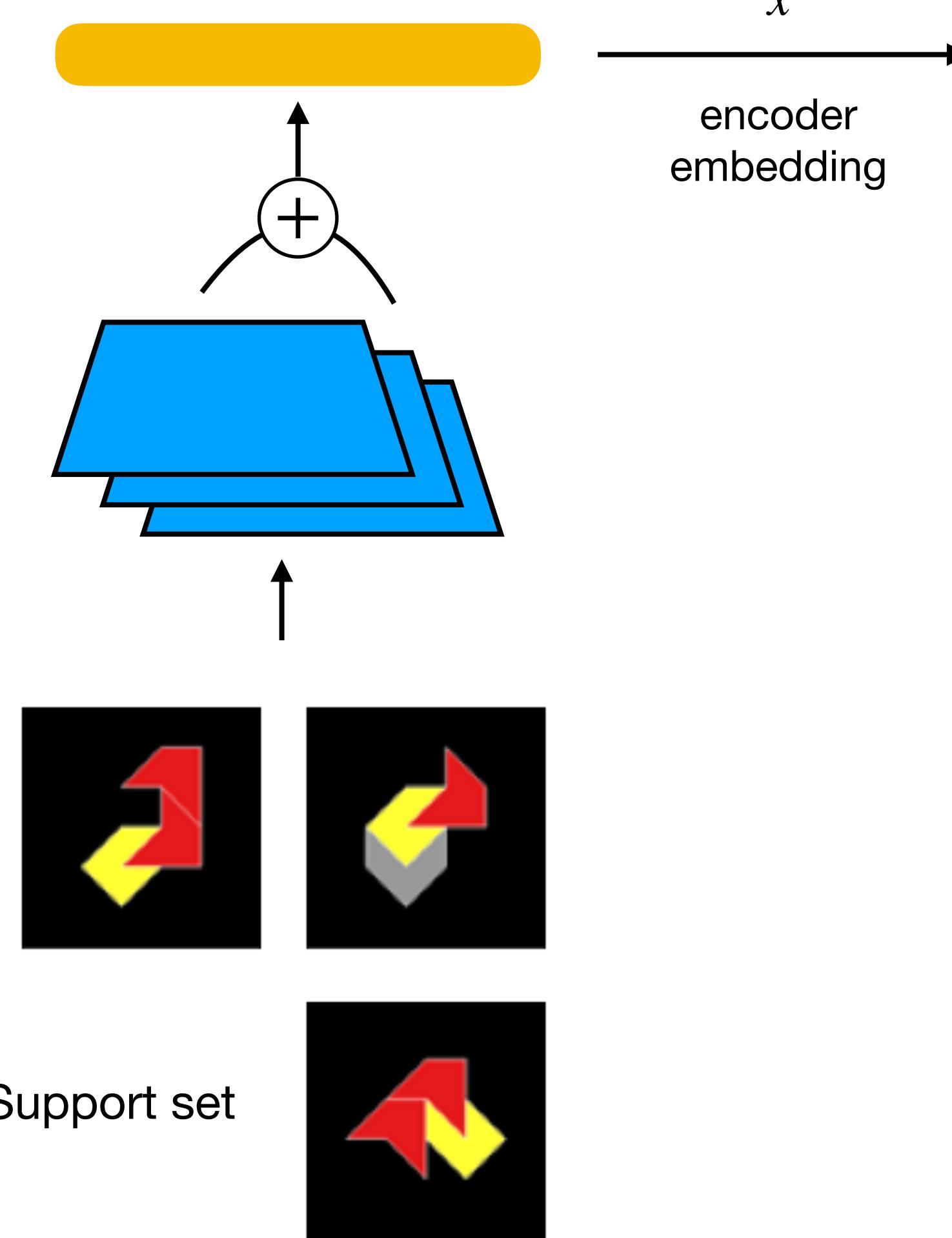


$$p(h | X) \propto p(h)p(X | h)$$



Generative neuro-symbolic (GNS) model

1. Neural encoder

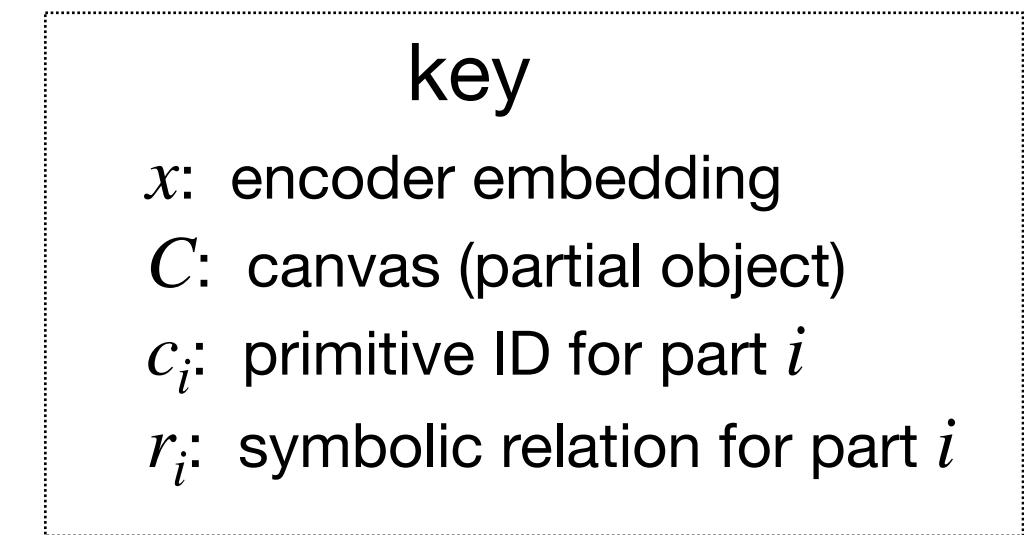
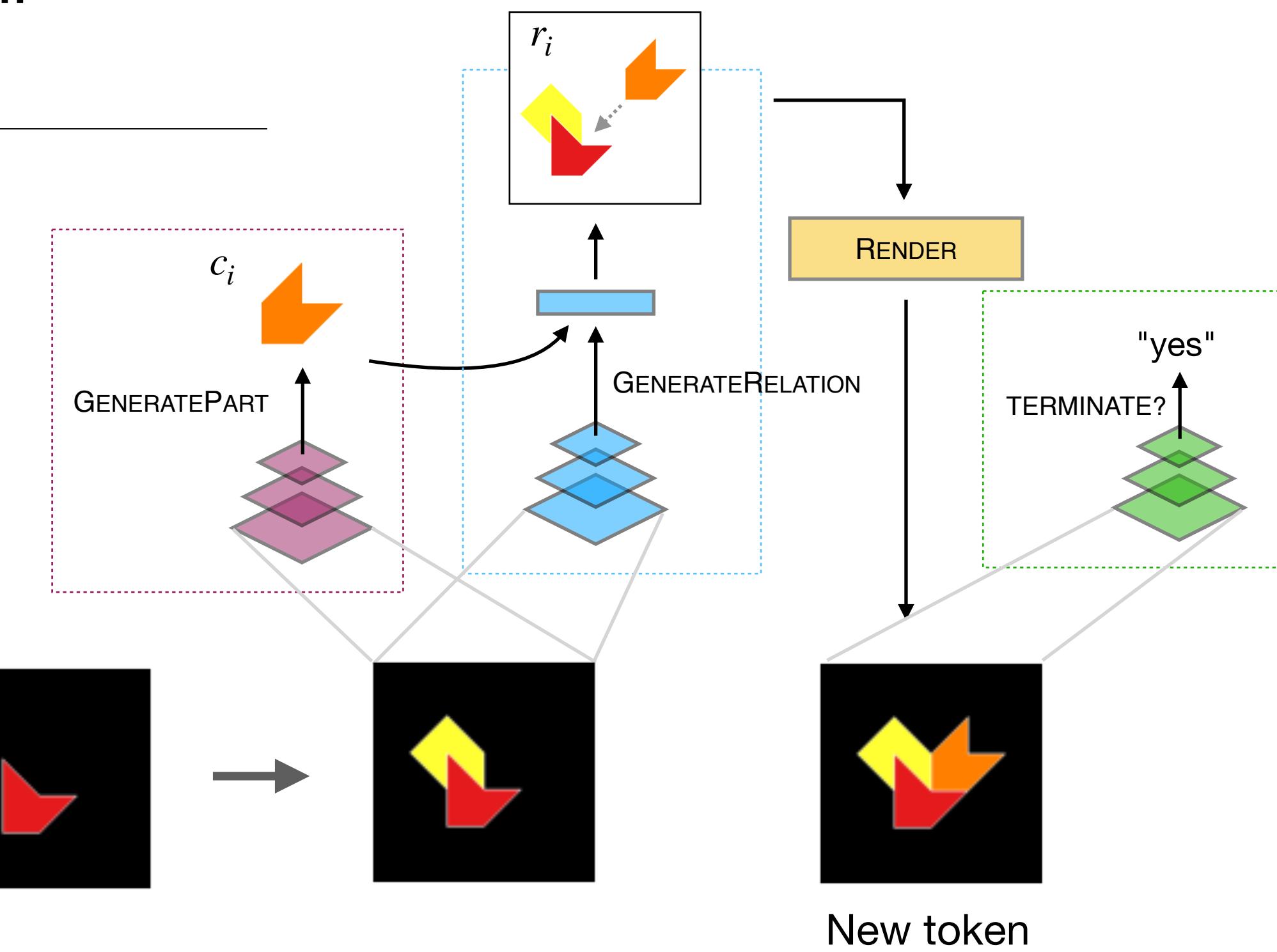


2. Generative neuro-symbolic decoder

```
procedure GENERATETOKEN( $x$ )
   $C \leftarrow 0$ 
  while True do
     $c_i \leftarrow \text{GENERATEPART}(x, C)$ 
     $r_i \leftarrow \text{GENERATERELATION}(x, C, c_i)$ 
     $C \leftarrow \text{RENDER}(C, c_i, r_i)$ 
    if TERMINATE( $x, C$ ) then
      break
  return  $C$ 
```

Canvas:

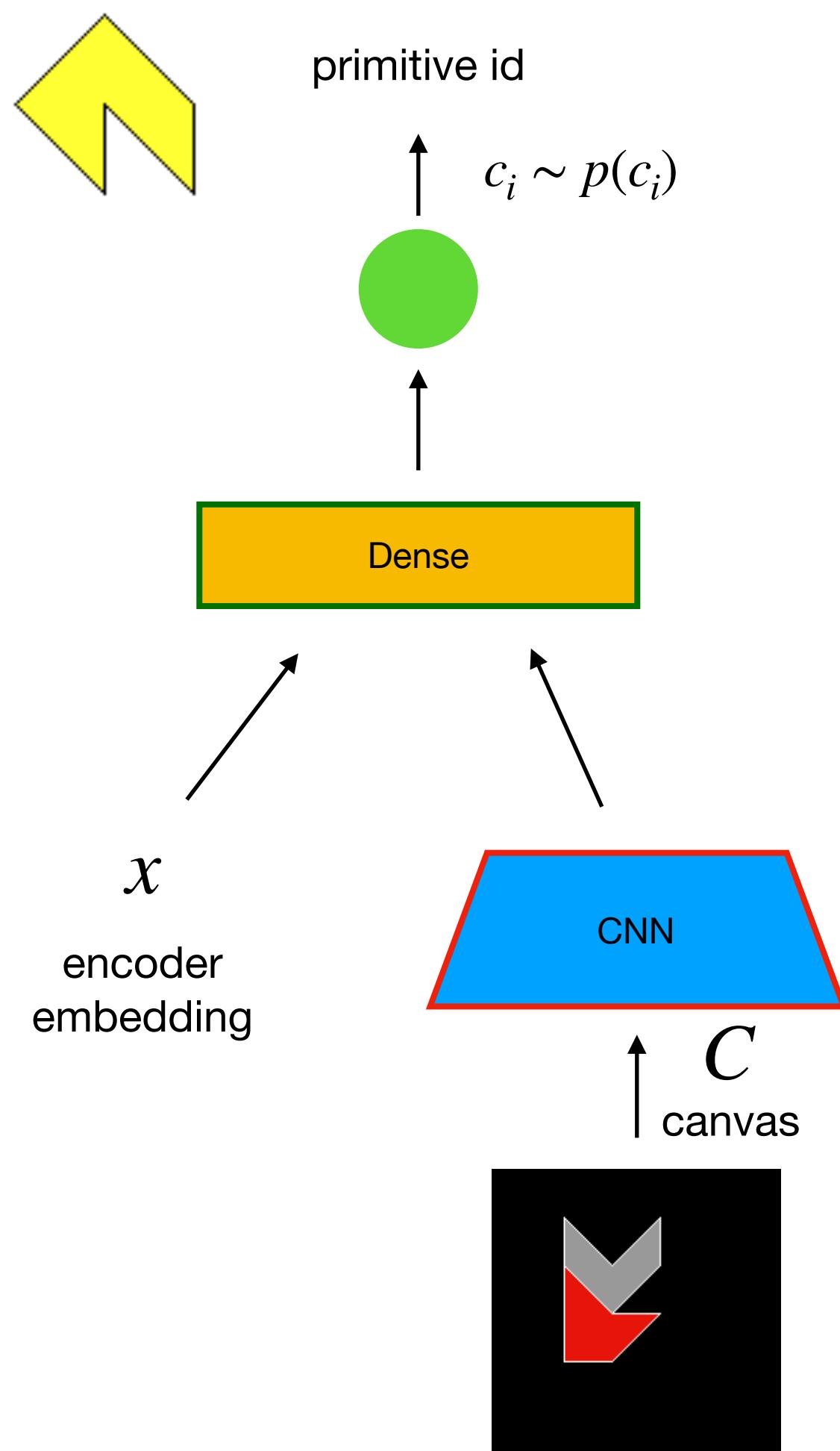
C



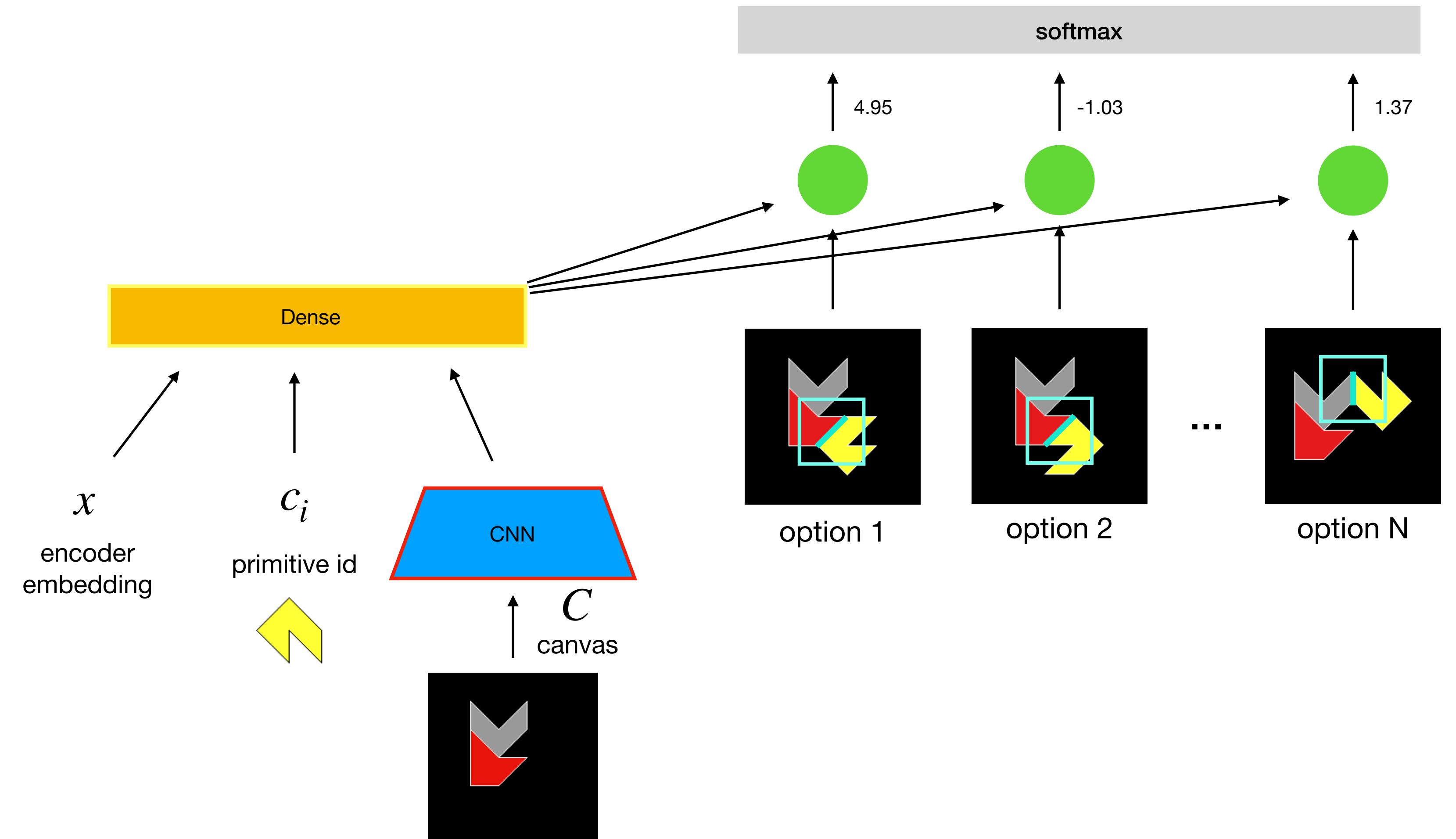
GNS subroutines

(example for 3rd part)

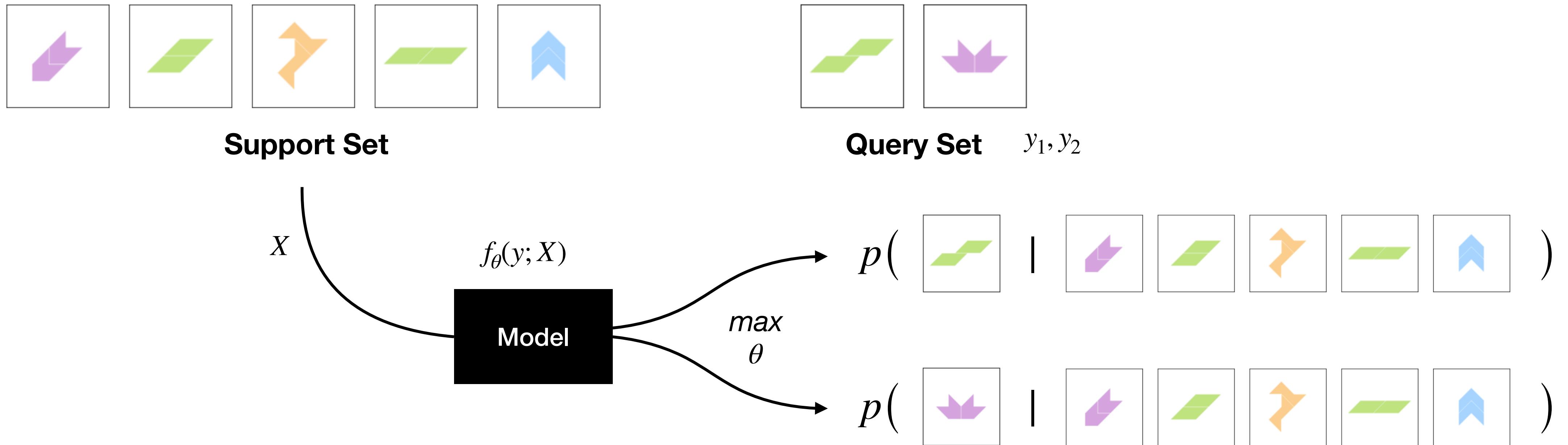
GENERATEPART($x, C \rightarrow c_i$



GENERATERELATION($x, C, c_i \rightarrow r_i$



Meta-learning



Objective: maximize log-likelihood of query tokens conditioned on the support

Meta-learning training data

bootstrapping the symbolic Bayesian model

P
Synthetic data
distribution

procedure P

$h \sim p(h)$
 $S = x_1, \dots, x_n \sim p(x \mid h)$
 $Q = x'_1, \dots, x'_n \sim p(x \mid h)$
return S, Q

▷ Sample formula hypothesis from prior
▷ Sample support set from formula
▷ Sample query set from formula

R
Resampled synthetic
data distribution

procedure R

$S \sim \text{Uniform}(\Phi)$
 $h \sim p(h \mid S)$
 $Q = x'_1, \dots, x'_n \sim p(x \mid h)$
return S, Q

▷ Sample support set from human trials
▷ Sample formula hypothesis from posterior
▷ Sample query set from formula

H
Human distribution

procedure H

$S, Q \sim \text{Uniform}(\Phi)$
return S, Q

▷ Sample support & query sets from human trials

C
Bias training
distribution

(see Section 4.4 and Appendix B.2)

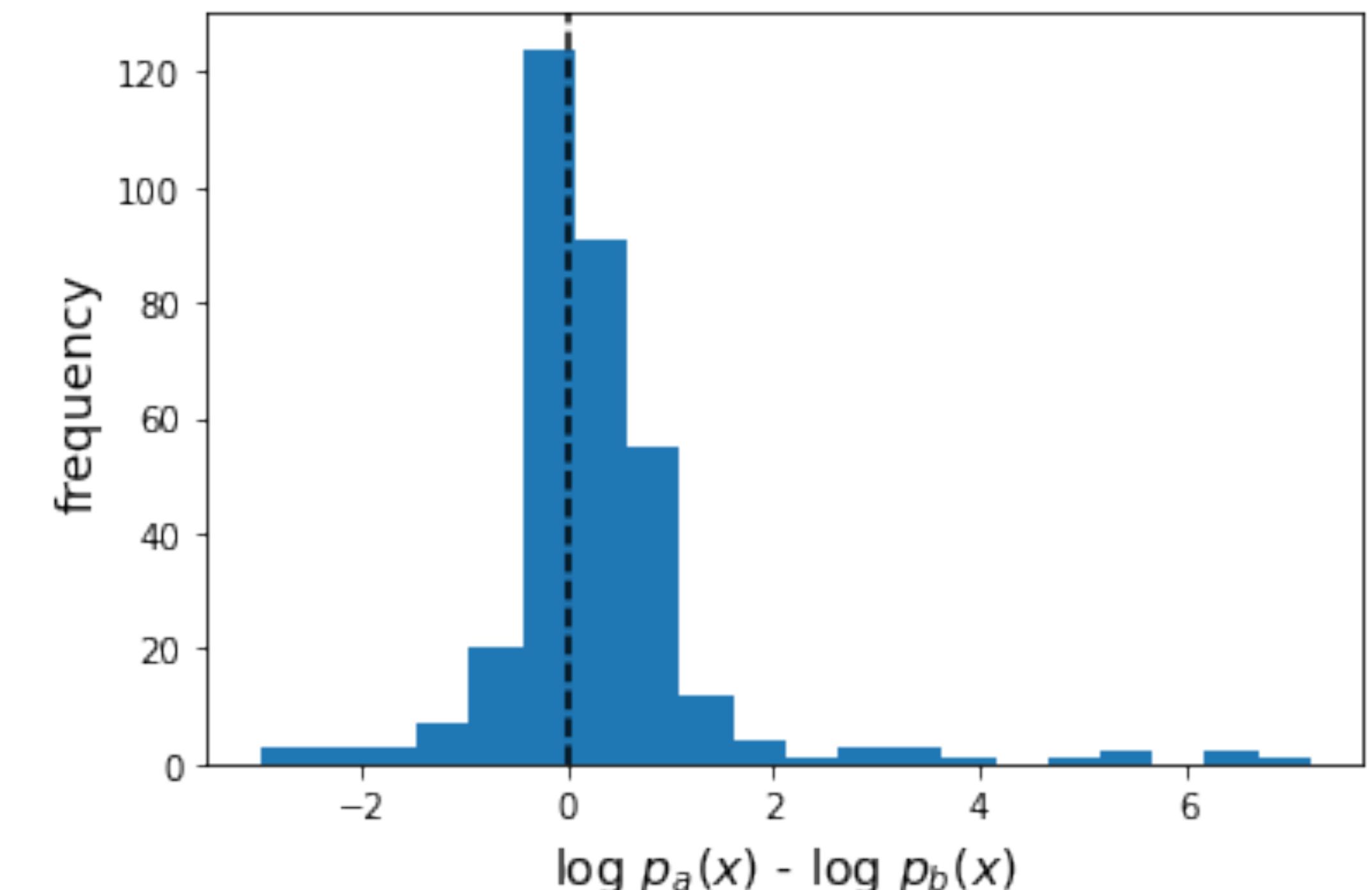
Log-likelihood evaluations

	Test log-likelihood
Bayesian	-4.741
GNS (P/R/H/C)	-4.444
GNS (P/R/H)	-4.535
GNS (P/R)	-4.645
GNS (P)	-4.930

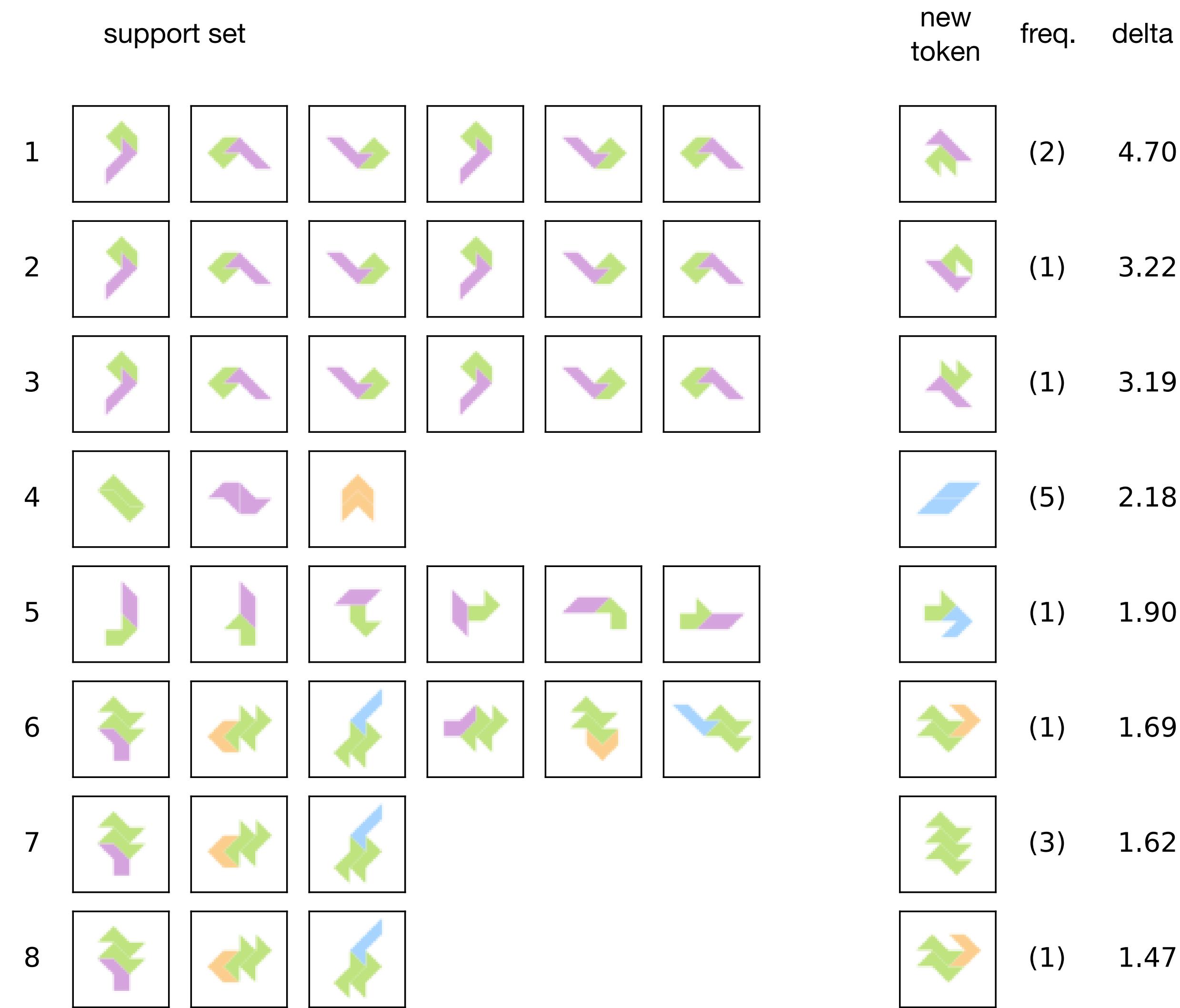
Likelihood of held-out human generations. For each model, the total log-likelihood averaged over the holdout set is reported.

Paired t-test comparing per-example log-likelihood of GNS (P/R/H/C) vs. Bayesian

$$t(336) = 6.197, \quad p < 0.001$$



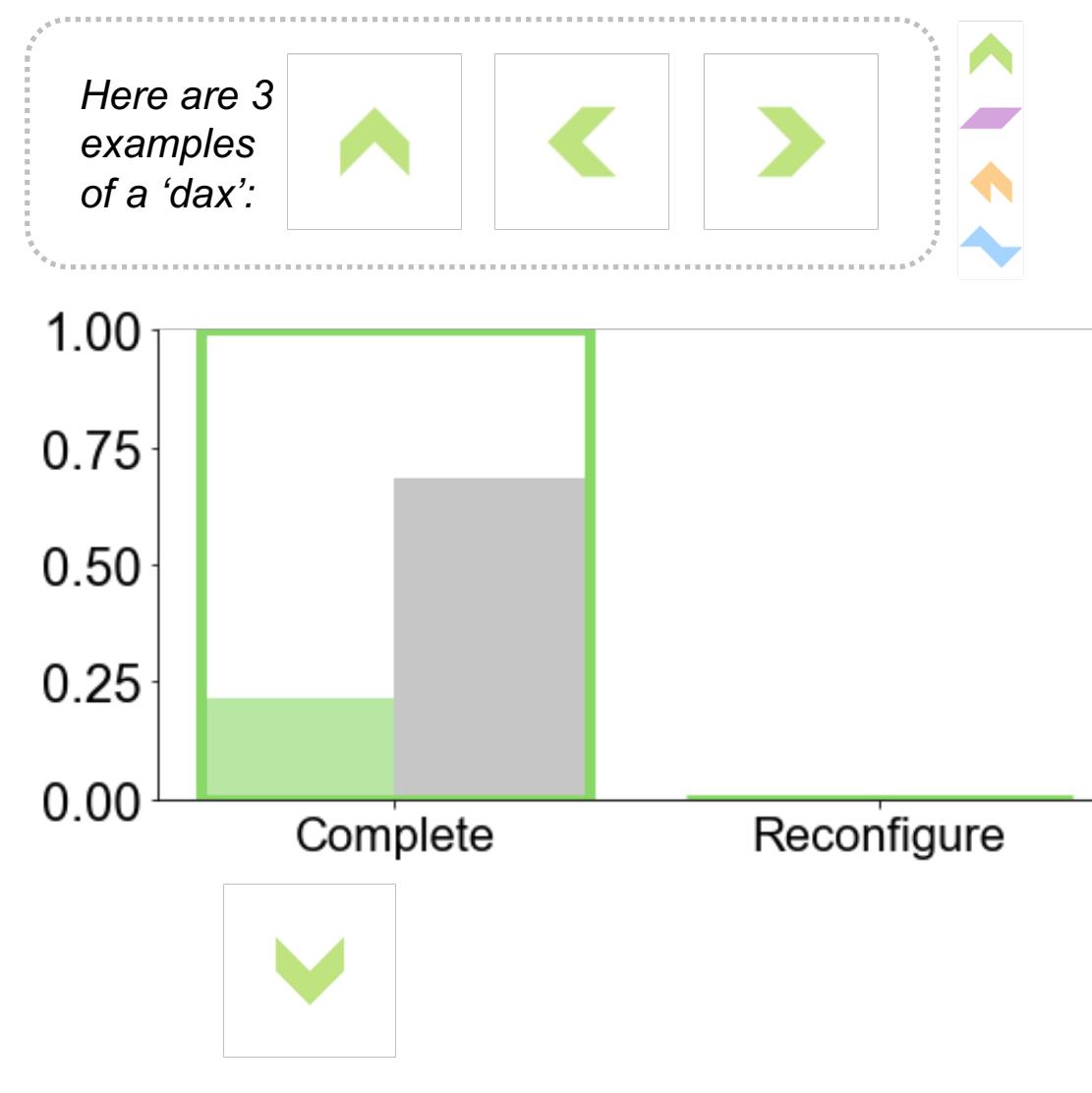
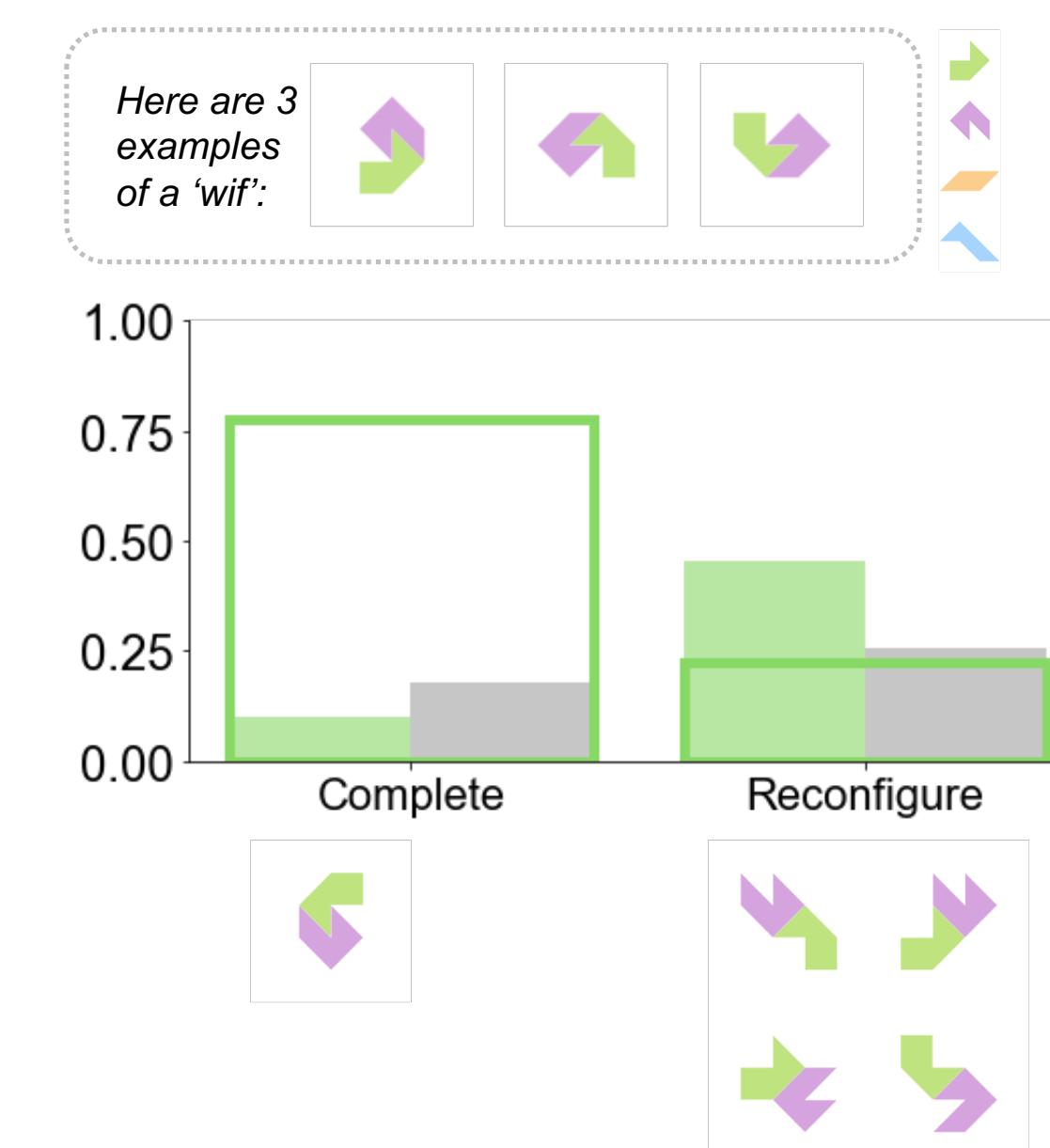
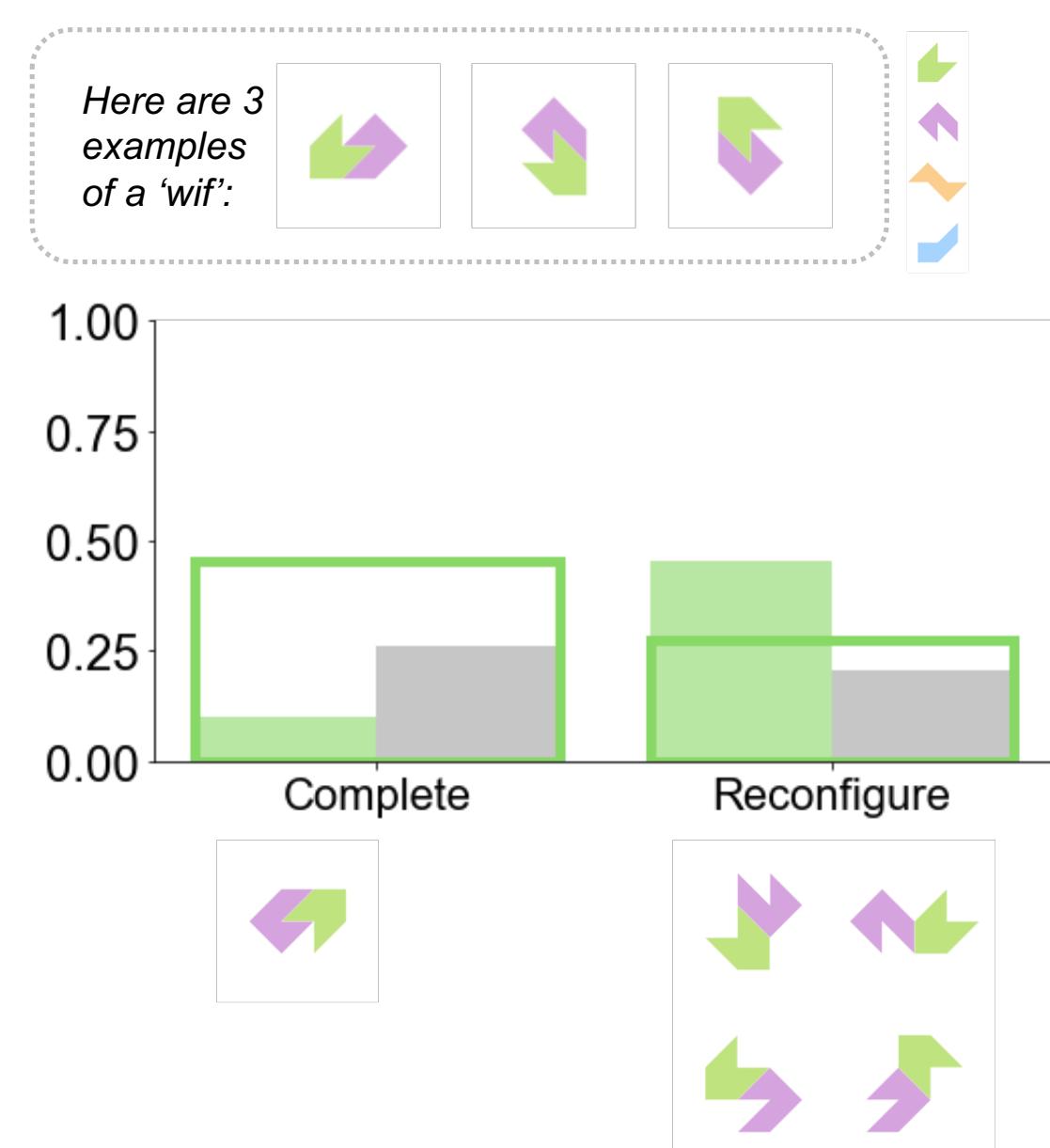
Log-likelihood evaluations



Accounting for human inductive biases

Accounting for human inductive biases

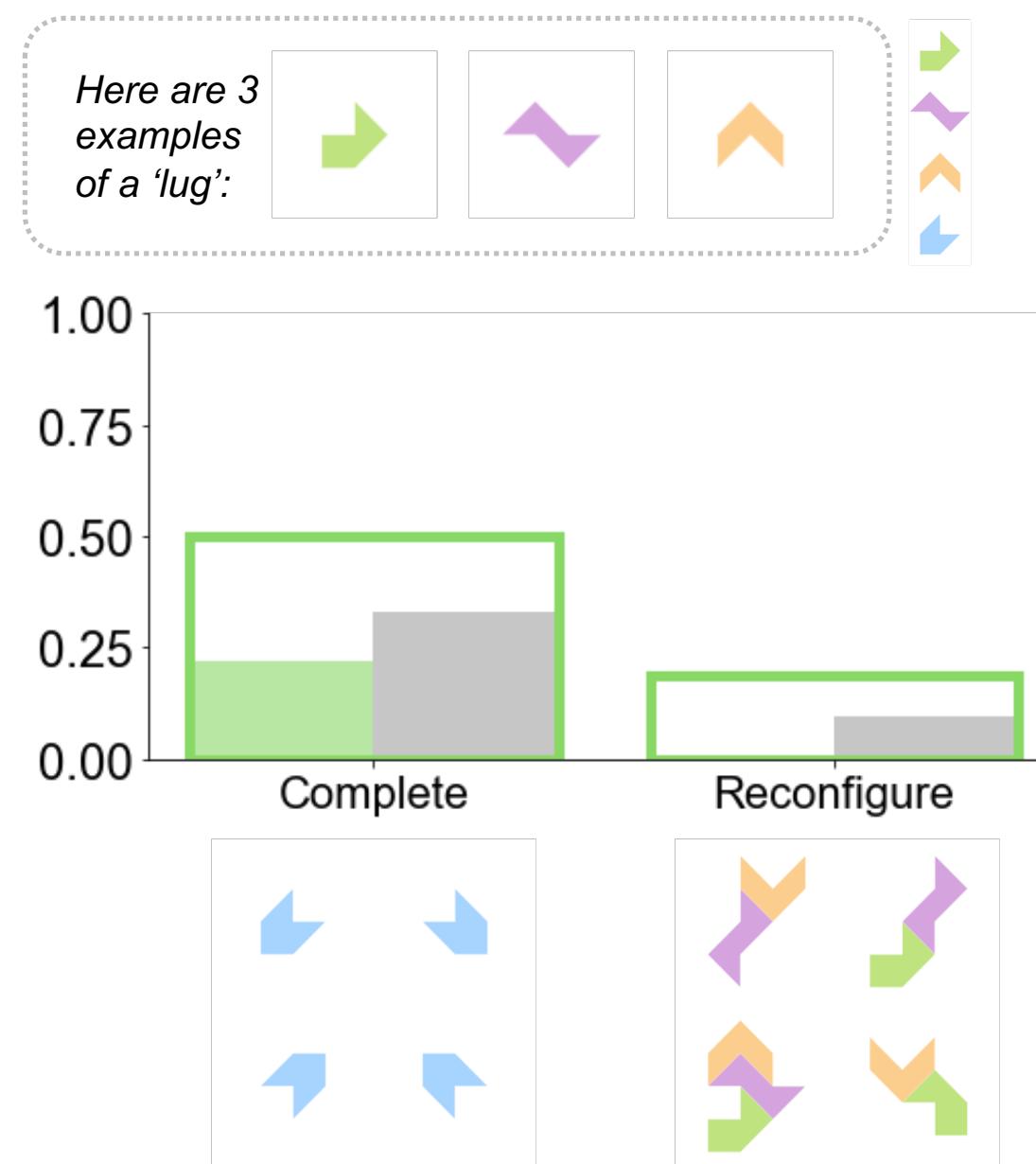
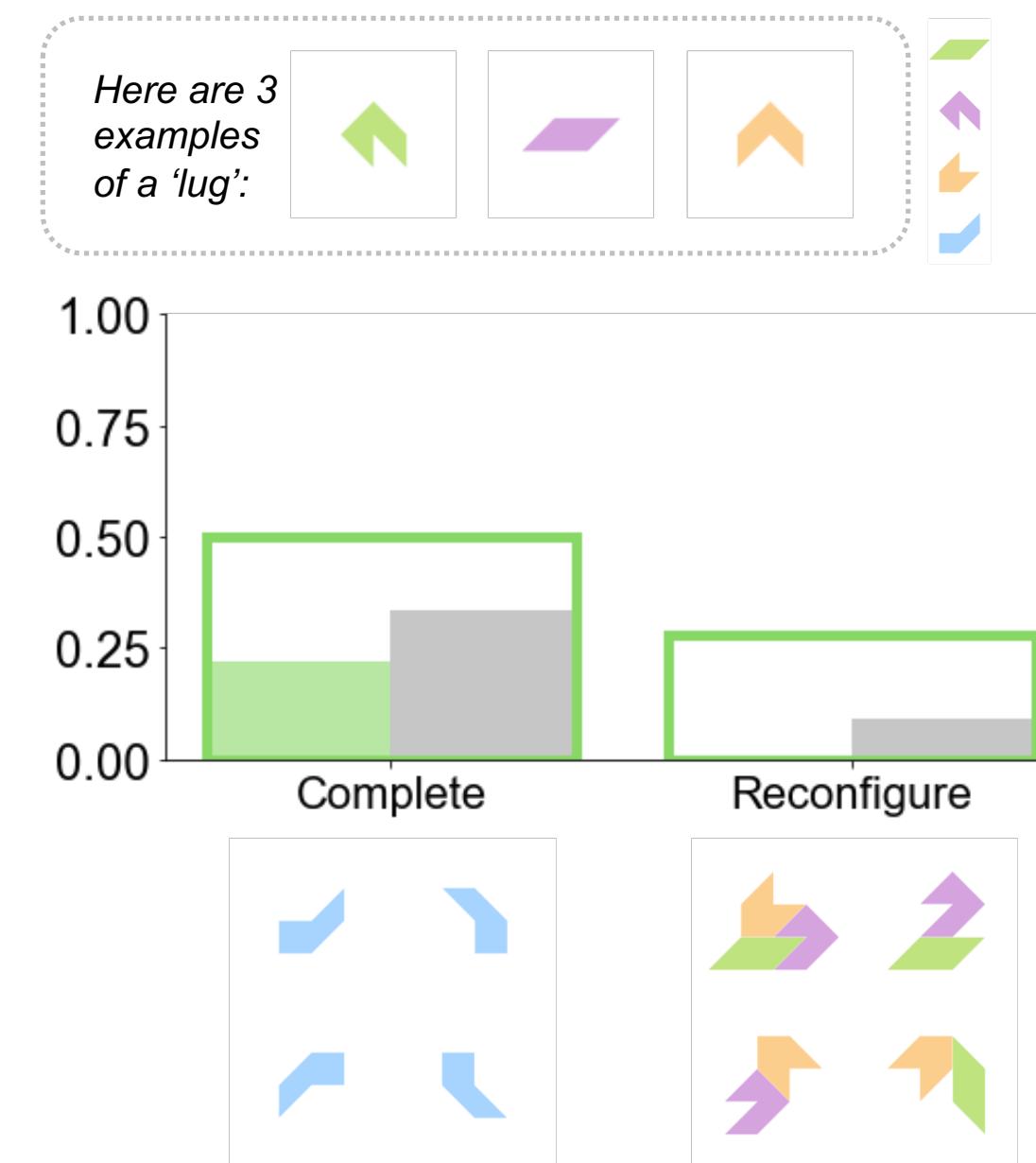
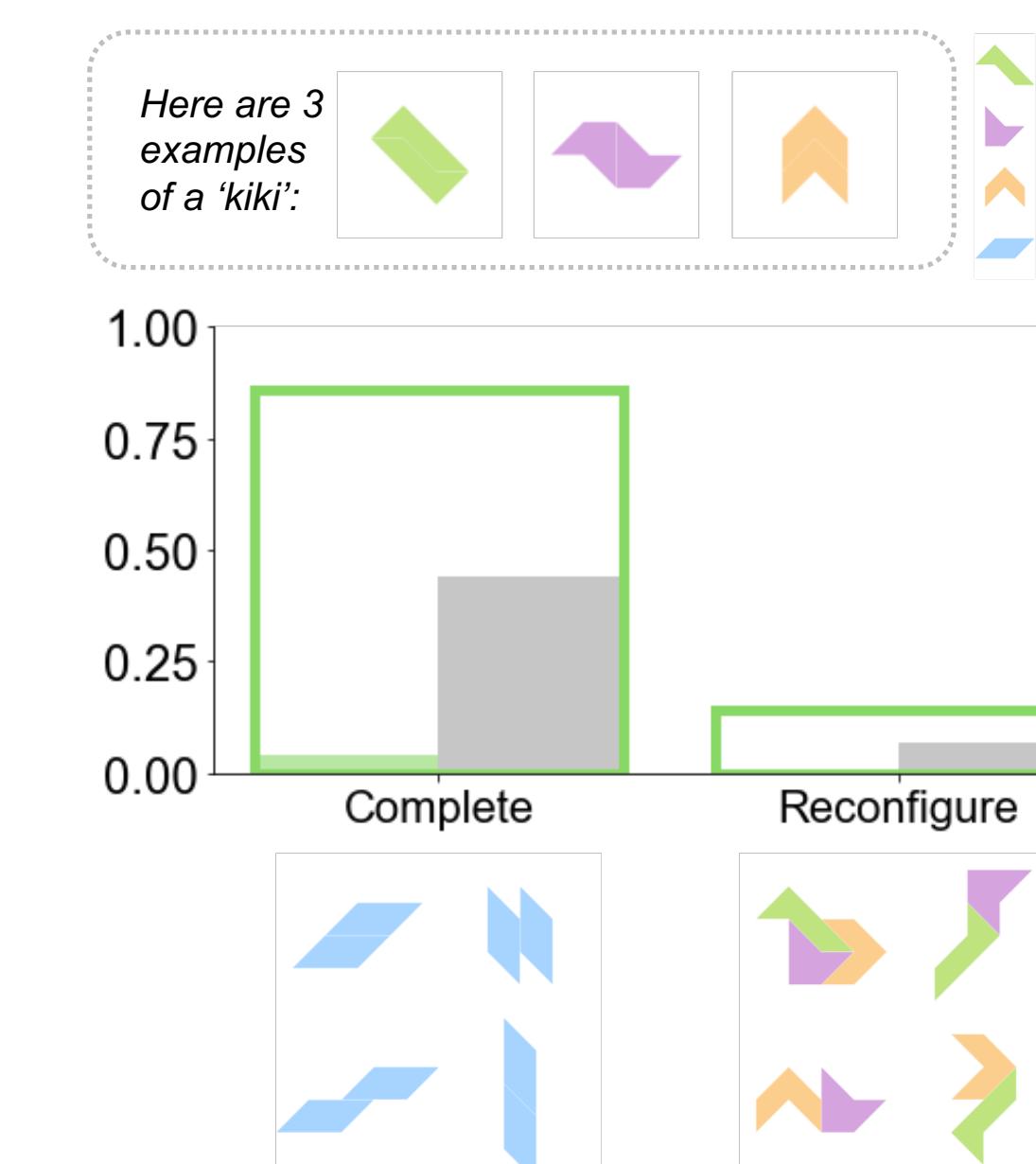
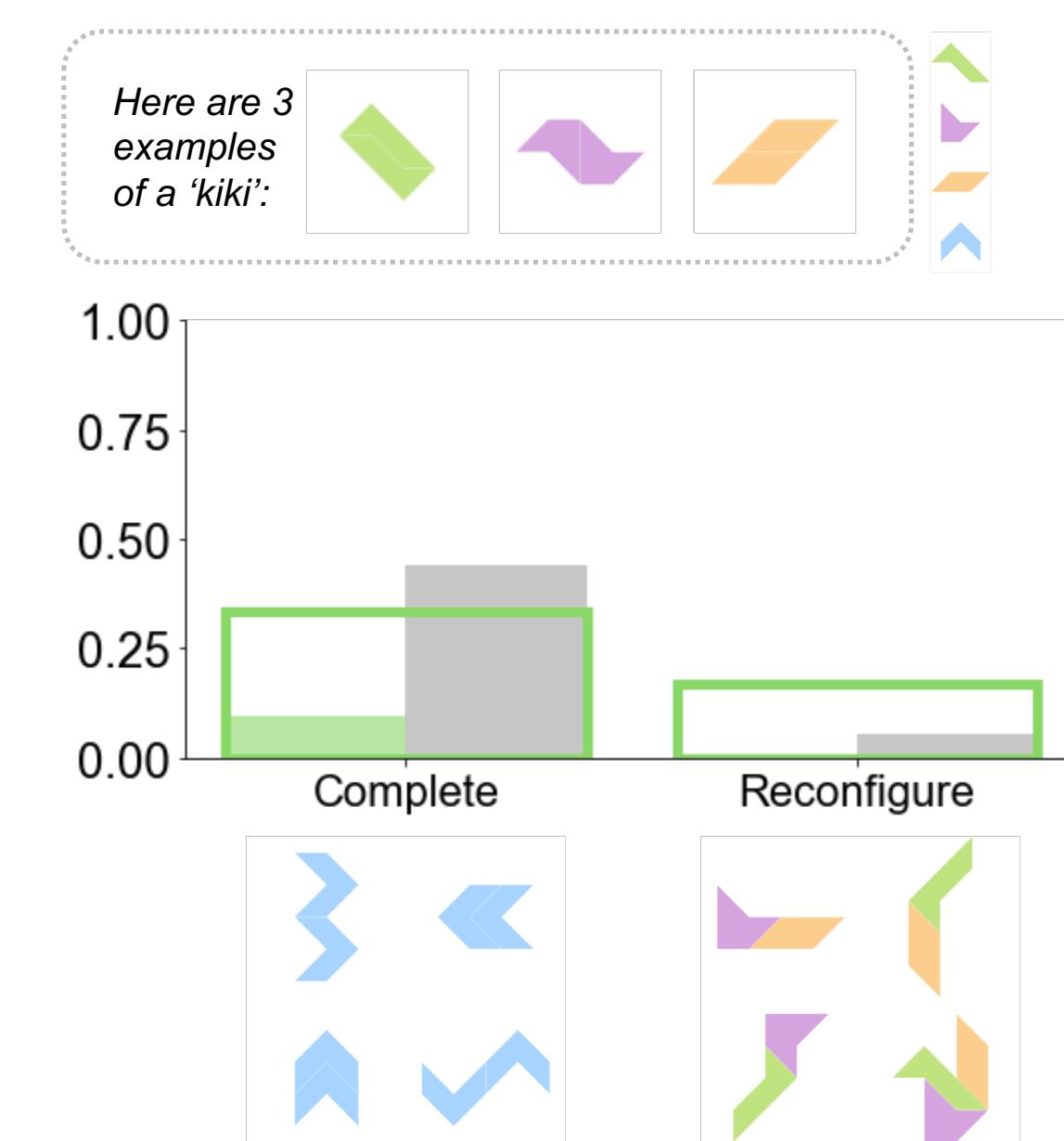
"rotations" trial type



Accounting for human inductive biases

"primitives" trial type

Human
Bayesian
GNS



Conclusions: Case study #2

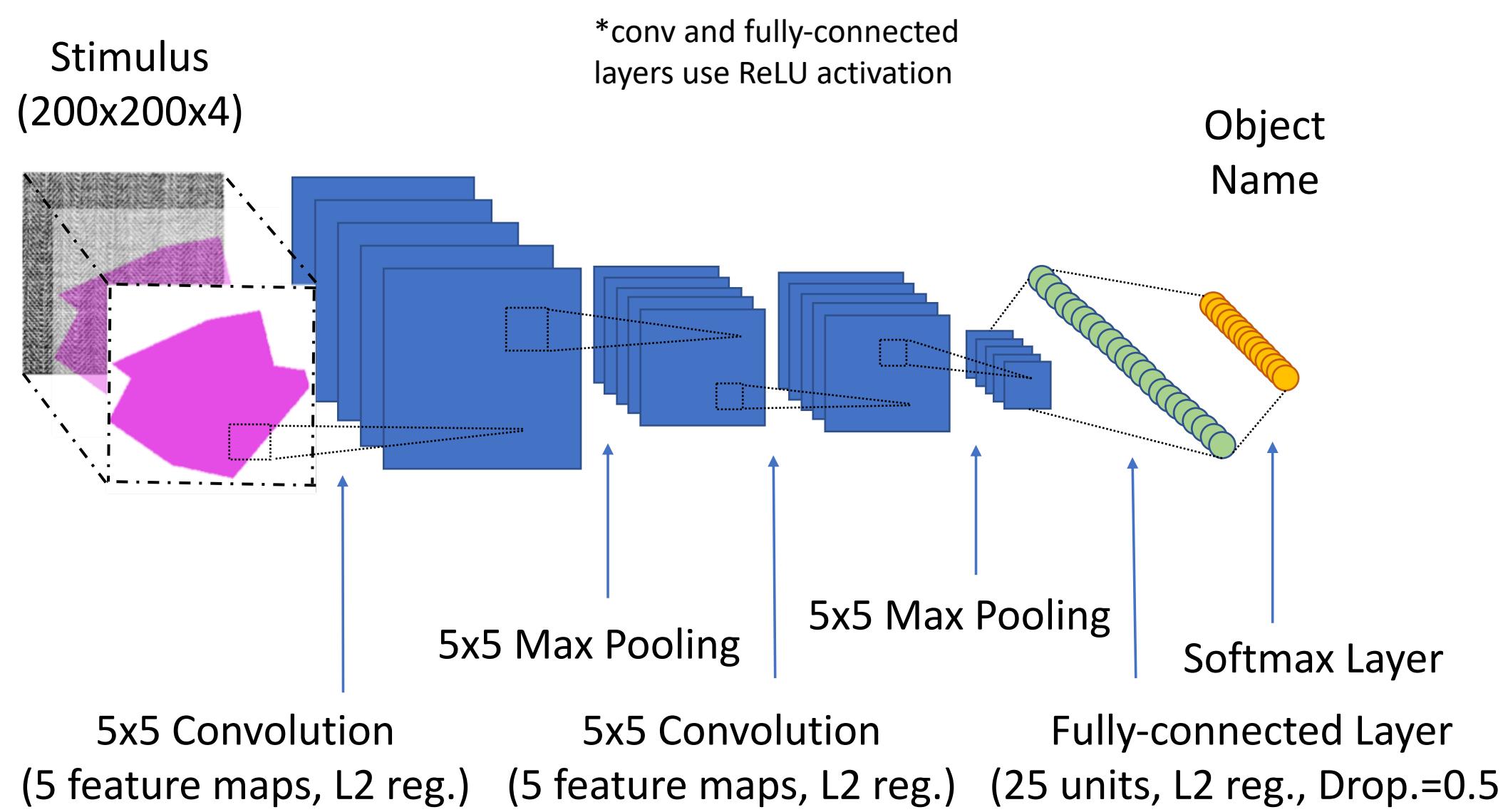
- GNS models are an effective way to understand and simulate human few-shot learning of structured visual concepts
- Compared to a strong symbolic baseline model, GNS provides an improved likelihood account of human few-shot generation
- GNS can account for human inductive biases that are not well-explained by alternatives

Additional projects

Learning inductive biases with simple neural networks

(Feinman & Lake, 2018)

Convolutional neural network (CNN) architecture

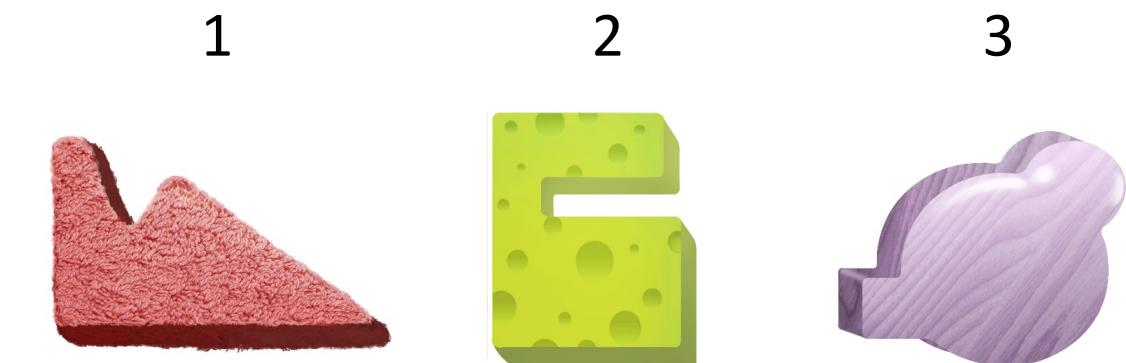


Shape bias test

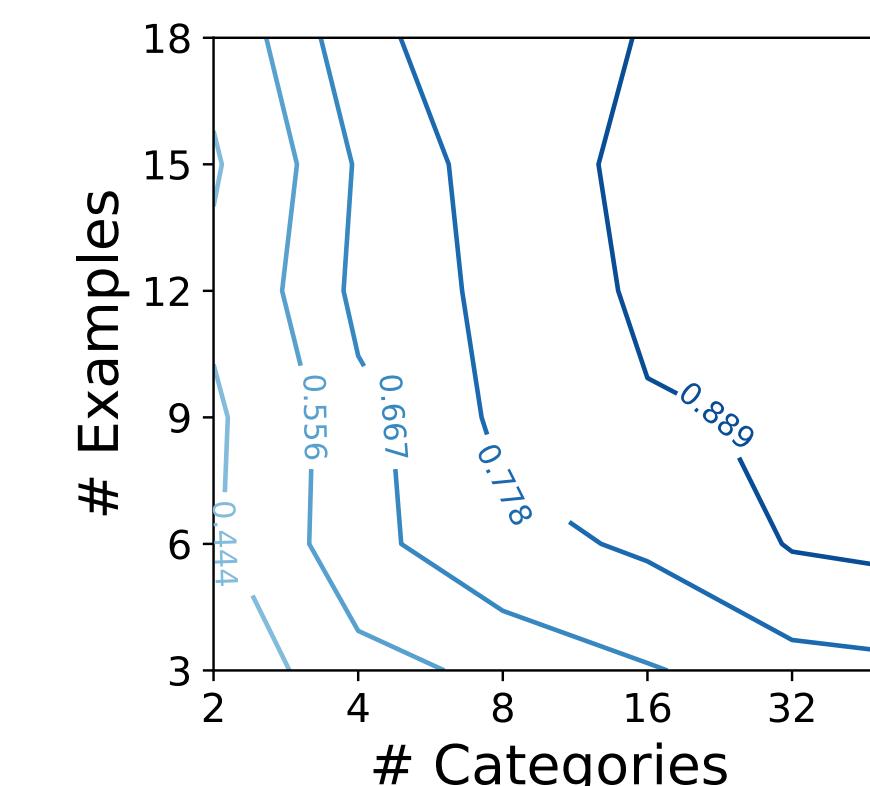
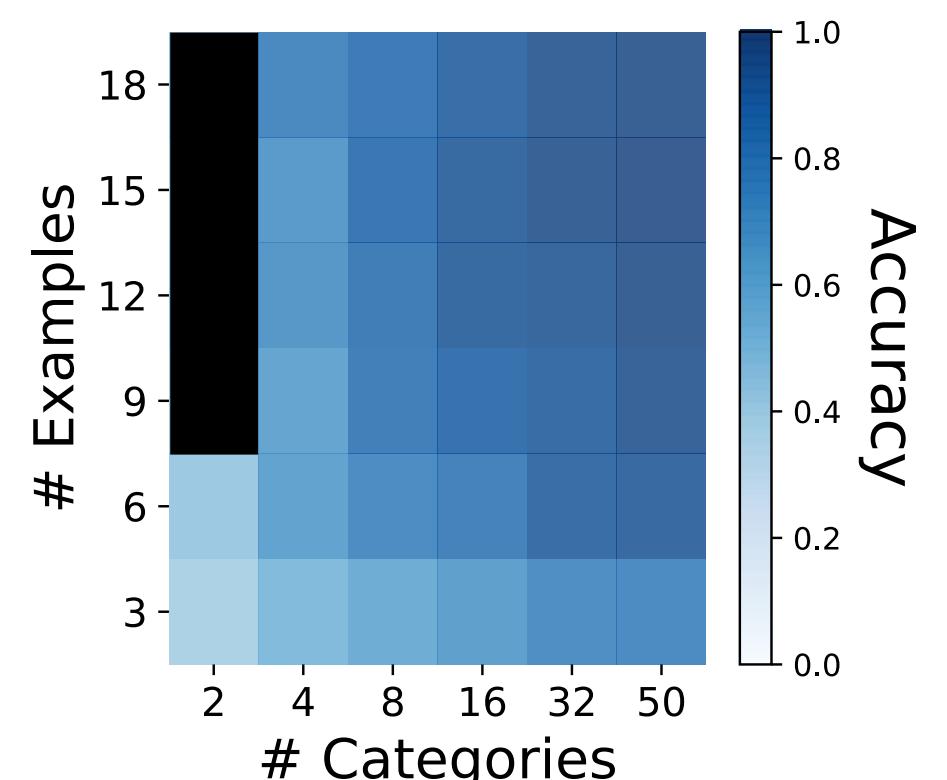
This is a “dax.”

(Smith et al., 2002)

Where is the other “dax?”

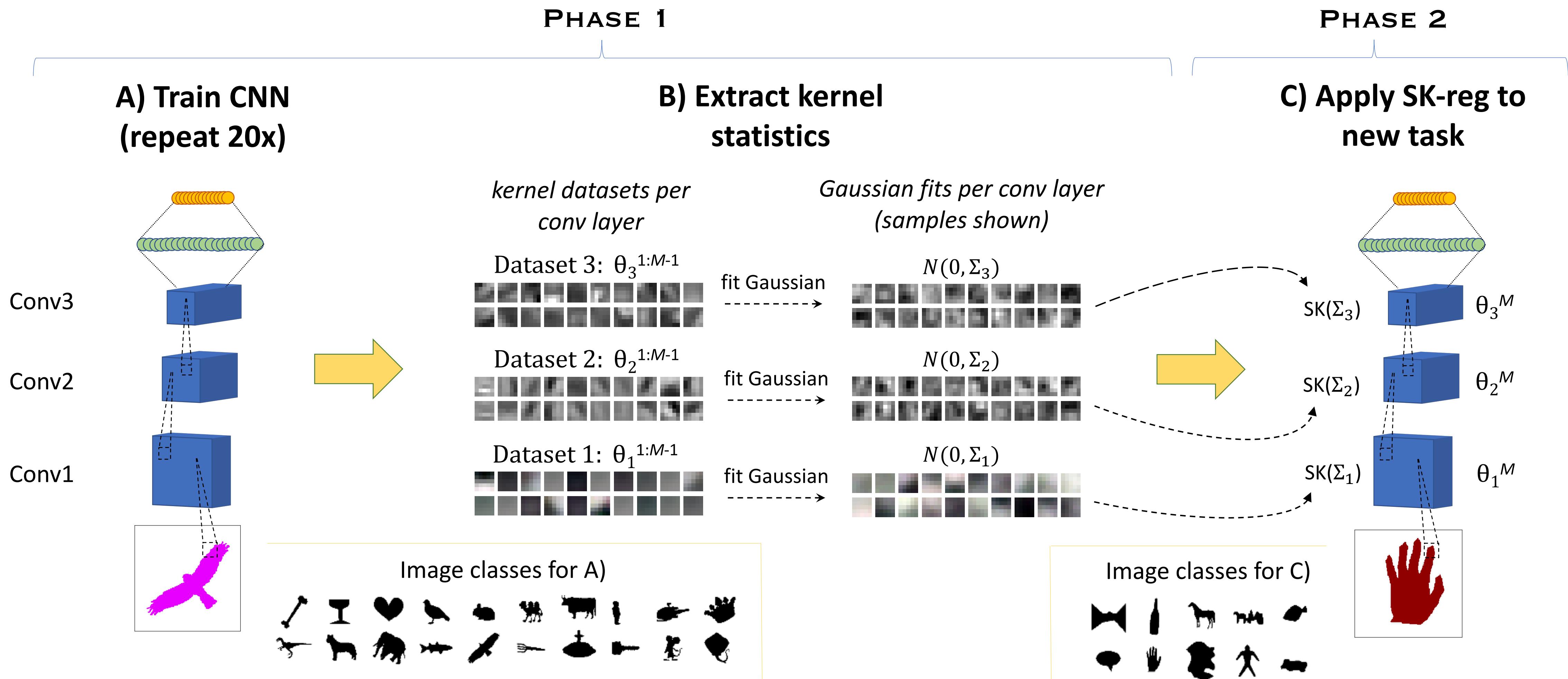


CNN shape bias strength vs. dataset size



Learning a smooth kernel regularizer for convolutional neural networks

(Feinman & Lake, 2019)



Summary & Conclusions

introduced Generative Neuro-Symbolic (GNS) modeling

procedure GENERATEEXAMPLE

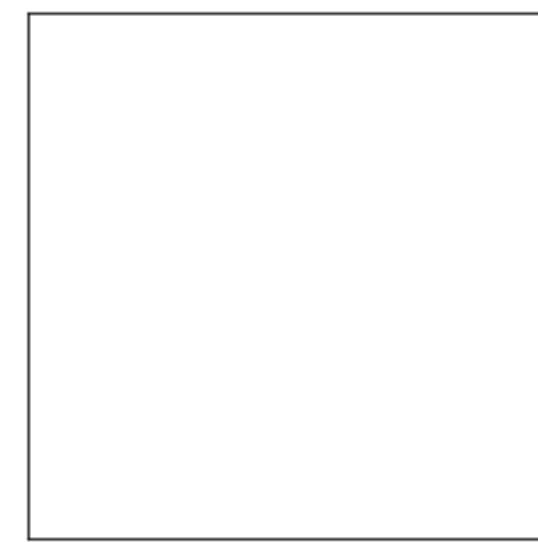
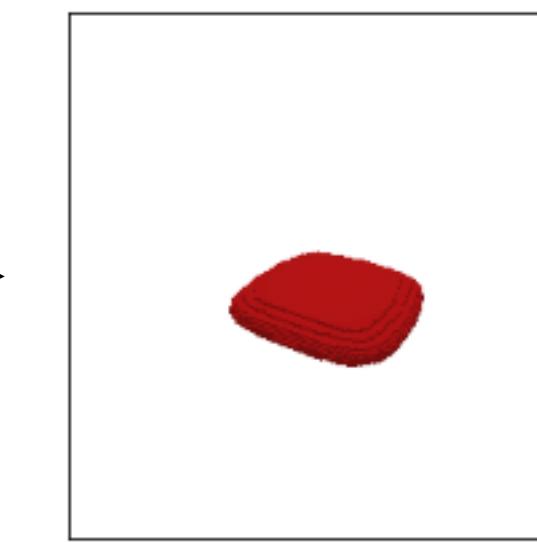
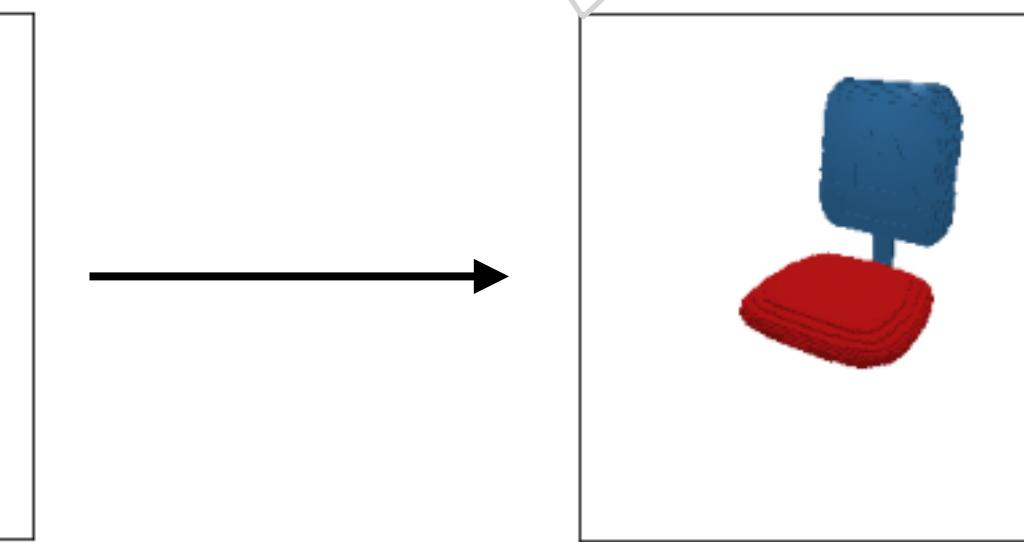
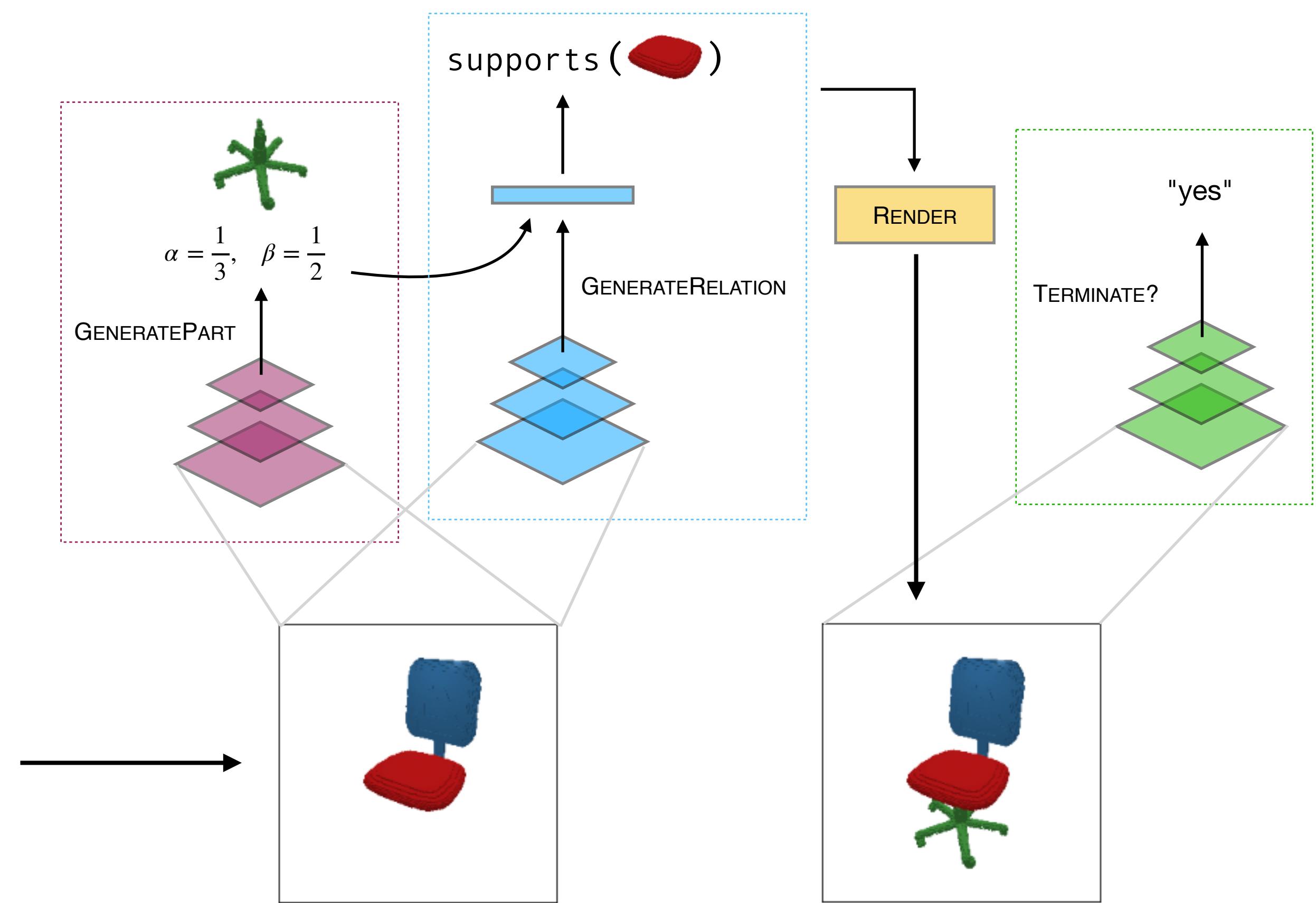
```

 $C \leftarrow 0$                                  $\triangleright$  Initialize blank canvas
for  $i = 1 \dots, \infty$  do
     $x_i \leftarrow \text{GENERATEPART}(C)$            $\triangleright$  Sample part
     $r_i \leftarrow \text{GENERATERELATION}(C, x_i)$      $\triangleright$  Sample relation
     $C \leftarrow \text{RENDER}(C, x_i, r_i)$            $\triangleright$  Render new canvas
    if TERMINATE?( $C$ ) then                   $\triangleright$  Sample termination (y/n)
        break
return  $C$                                  $\triangleright$  Return example

```

Canvas:

C



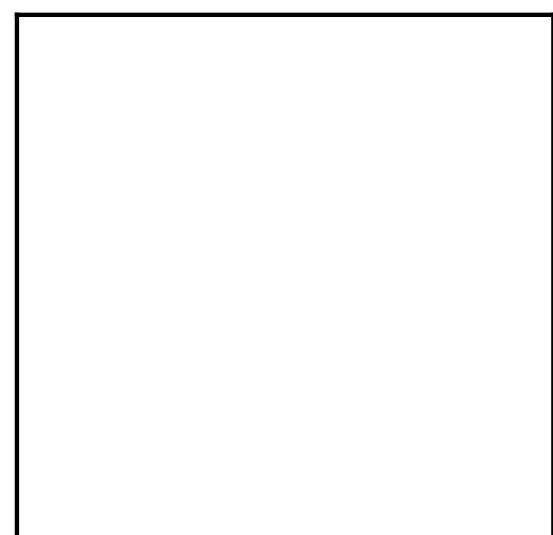
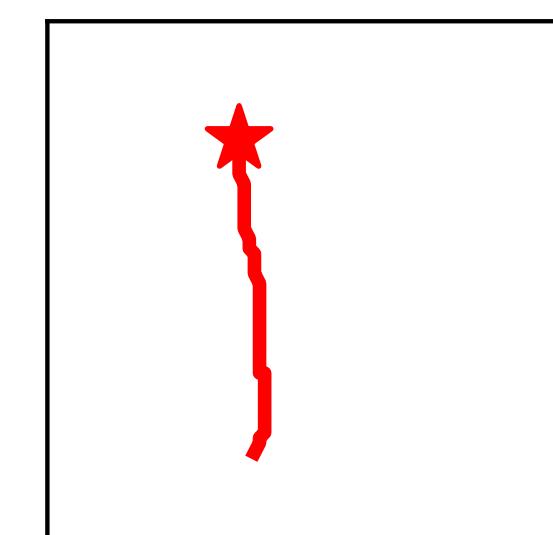
GNS model of handwritten character concepts

```

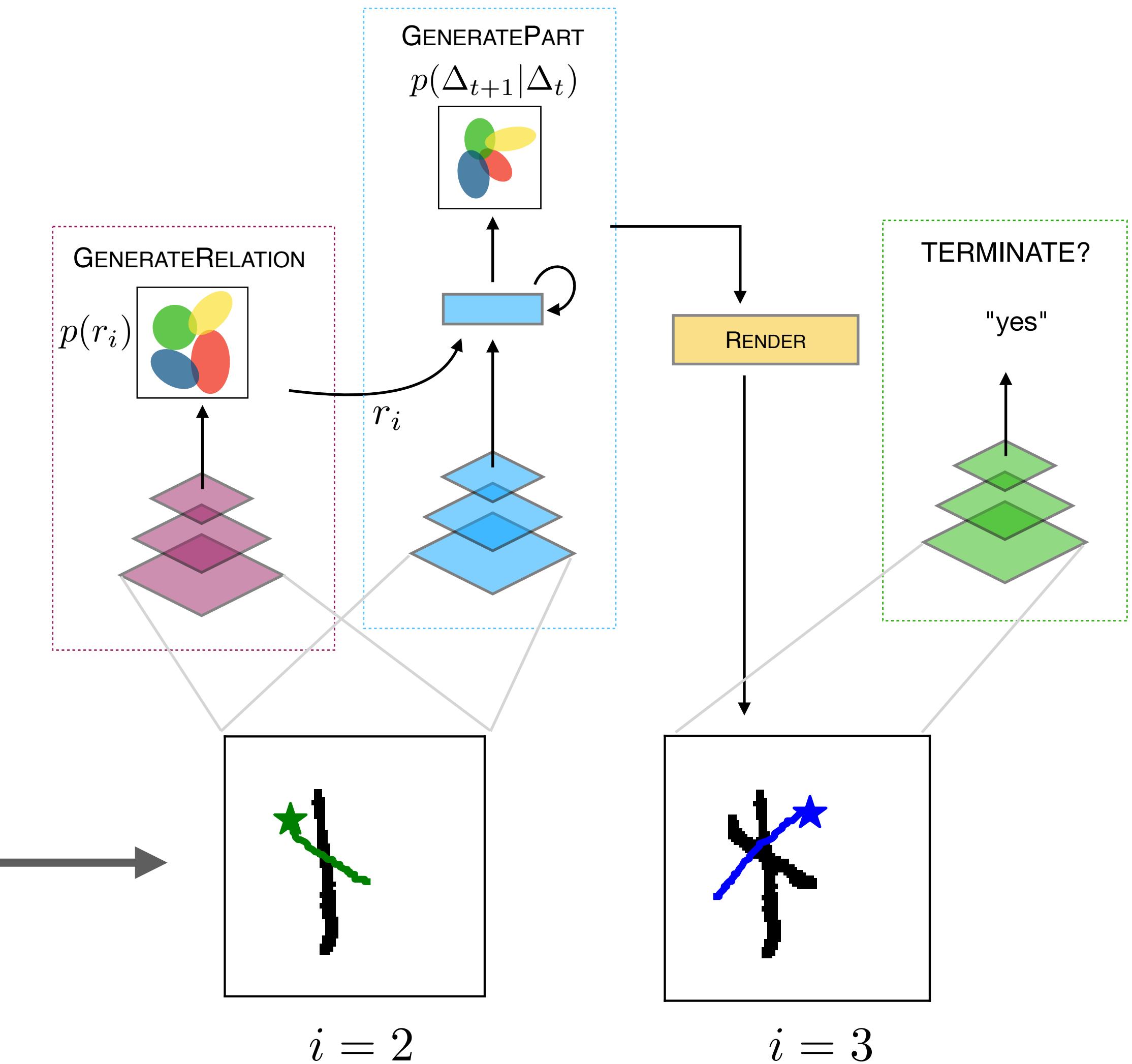
procedure GENERATECHARACTER
   $C \leftarrow 0$                                  $\triangleright$  Initialize blank canvas
  for  $i = 1 \dots, \infty$  do
     $r_i \leftarrow \text{GENERATERELATION}(C)$        $\triangleright$  Sample relation
     $x_i \leftarrow \text{GENERATEPART}(C, r_i)$        $\triangleright$  Sample part
     $C \leftarrow \text{RENDER}(C, x_i, r_i)$            $\triangleright$  Render to canvas
     $v_i \leftarrow \text{TERMINATE?}(C)$              $\triangleright$  Sample termination indicator
    if  $v_i$  then
      break                                 $\triangleright$  Terminate sample
  return  $C$ 

```

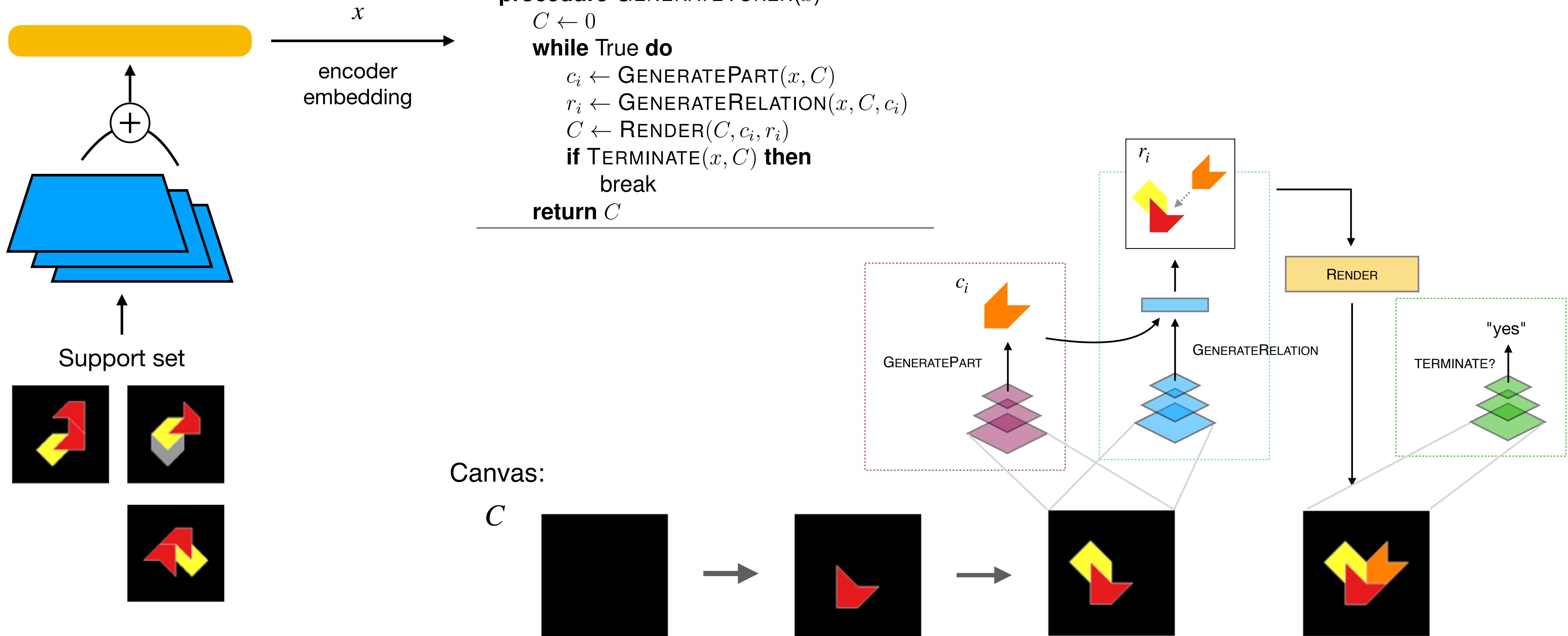
Canvas:
 C



$i = 1$



GNS model of synthetic part-based concepts ("alien figures")



General conclusions

- Generative neuro-symbolic (GNS) modeling provides a novel synthesis of ideas from the structured and statistical modeling traditions
- By combining these ingredients in a computational model, we can account for human concept learning in ways that purely- symbolic and neural models fall short
- GNS models can help us understand the dual structural and statistical natures of human knowledge and direct us toward a more accurate representation of concepts

Thank You

Brenden Lake

Yanli Zhou

Guy Davidson

Emin Orhan

Wai Keen Vong

+ HMLL lab

Tuan-Anh Le

Maxwell Nye

Joshua Tenenbaum

Lucas Tian

+ CoCoSci lab

Nikhil Parthasarathy

NYU Neuroscience cohort

Andy Feinman

Mary Van Hoomissen

Nick Feinman

Charlotte Walsmsley

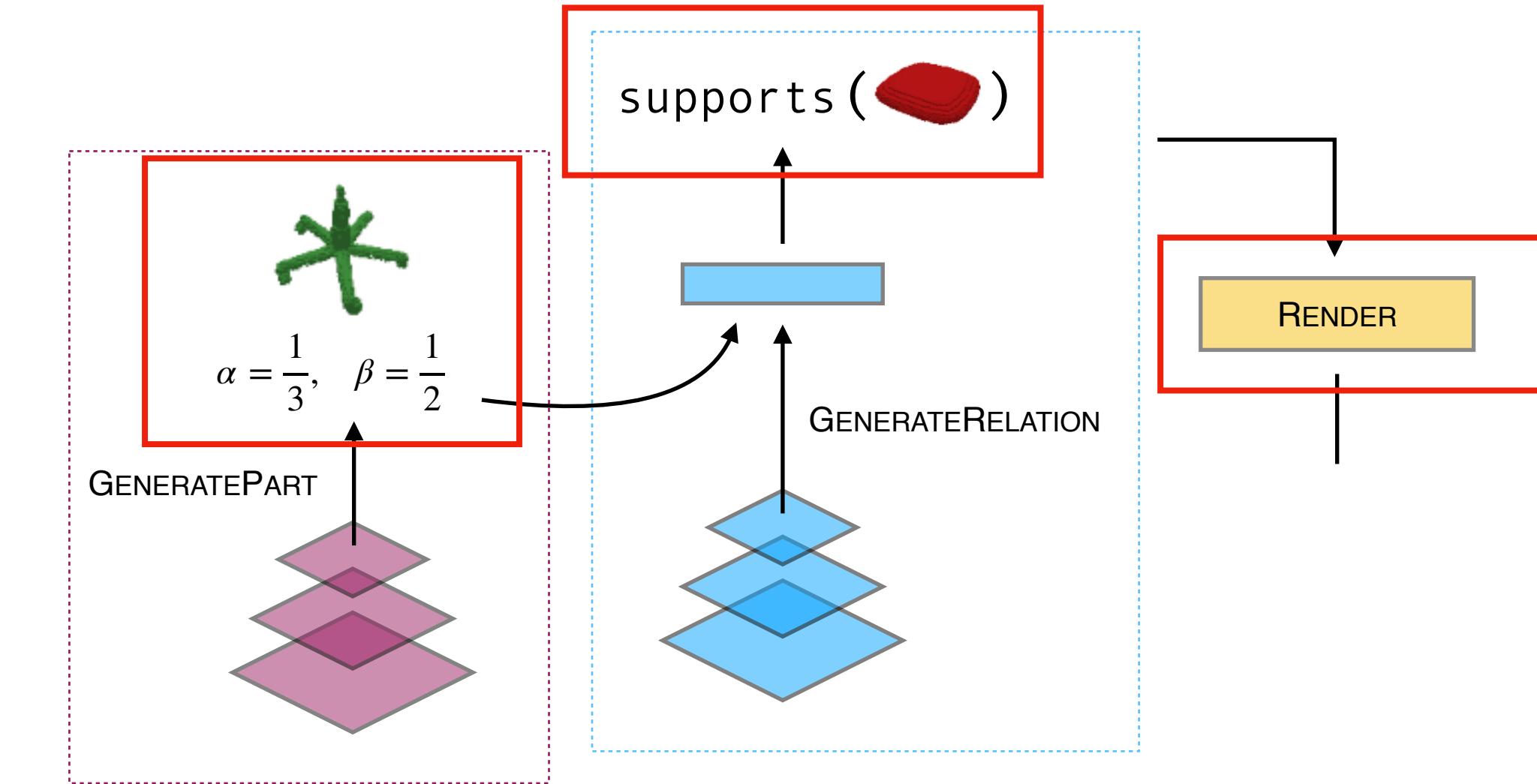
Questions?

"What I cannot create, I do not understand."

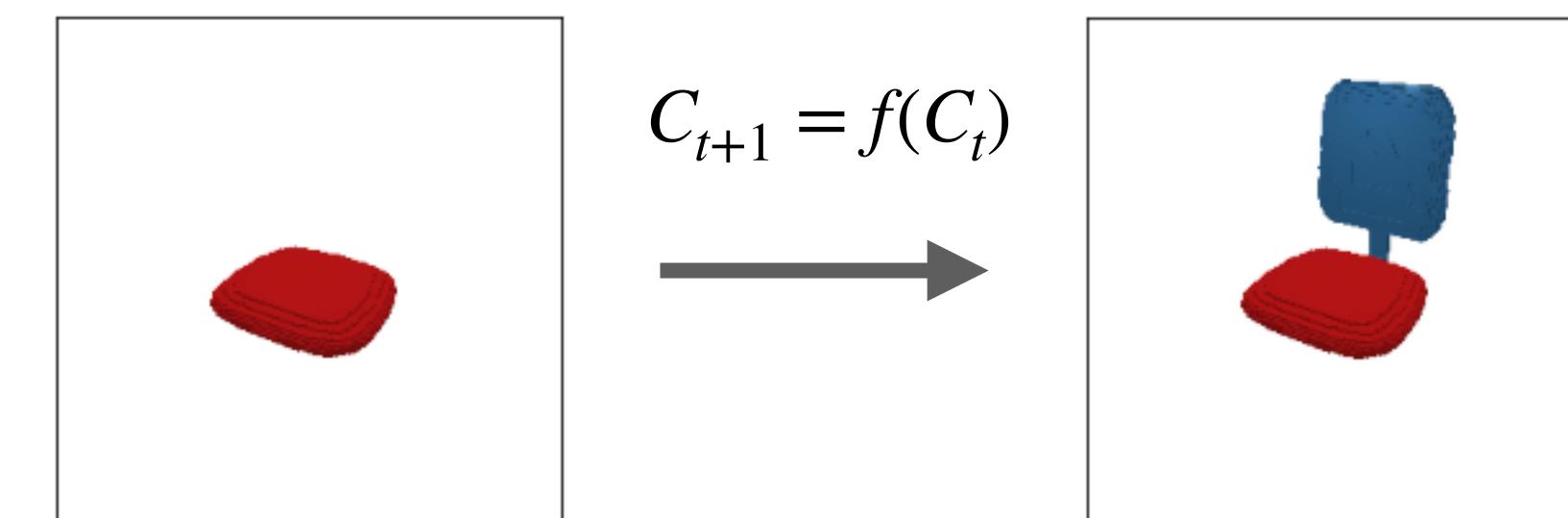
—Richard Feynman

Inductive biases of GNS architecture

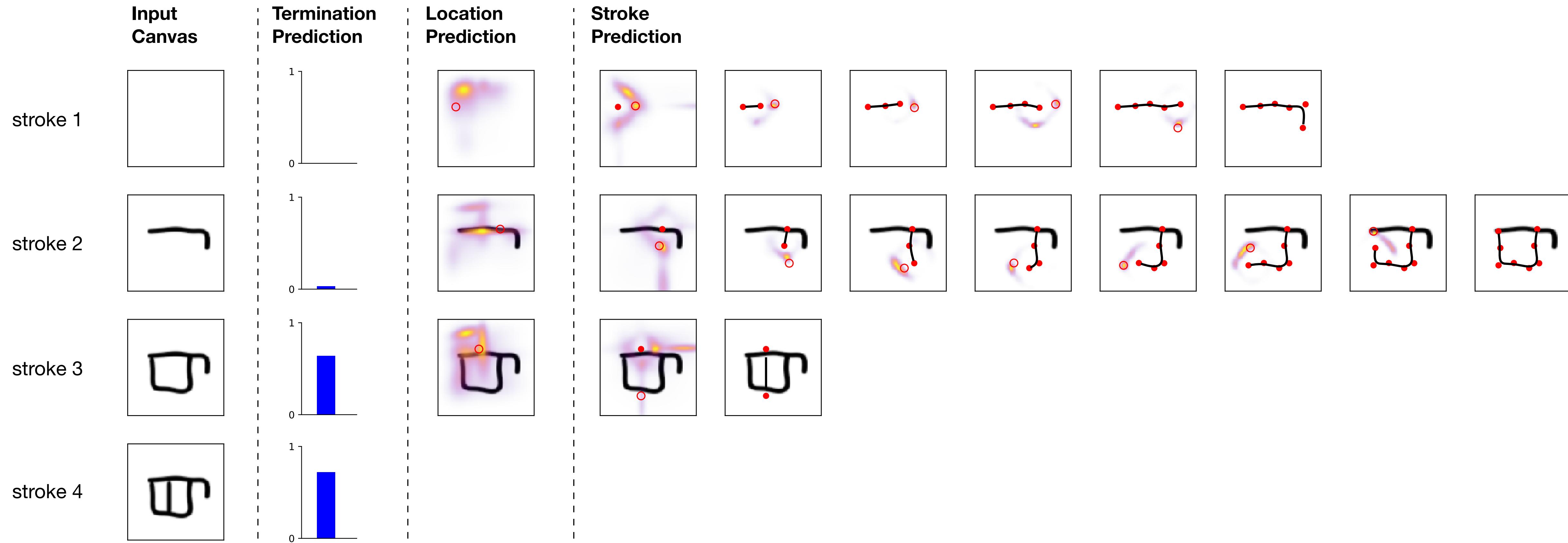
Explicit notion of *causality* via symbolic primitives and renderer



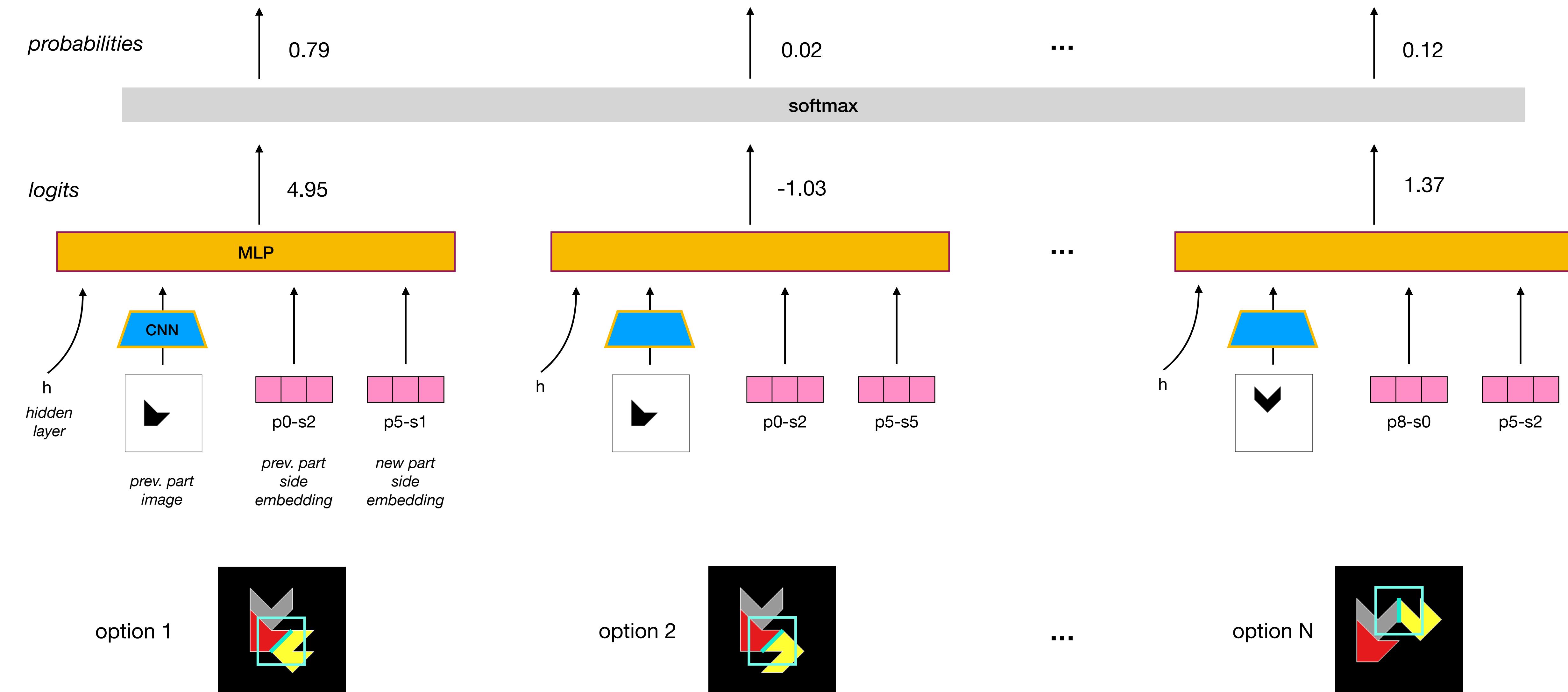
Compositional representation via modular subroutines and controlled memory state



Forward model in action

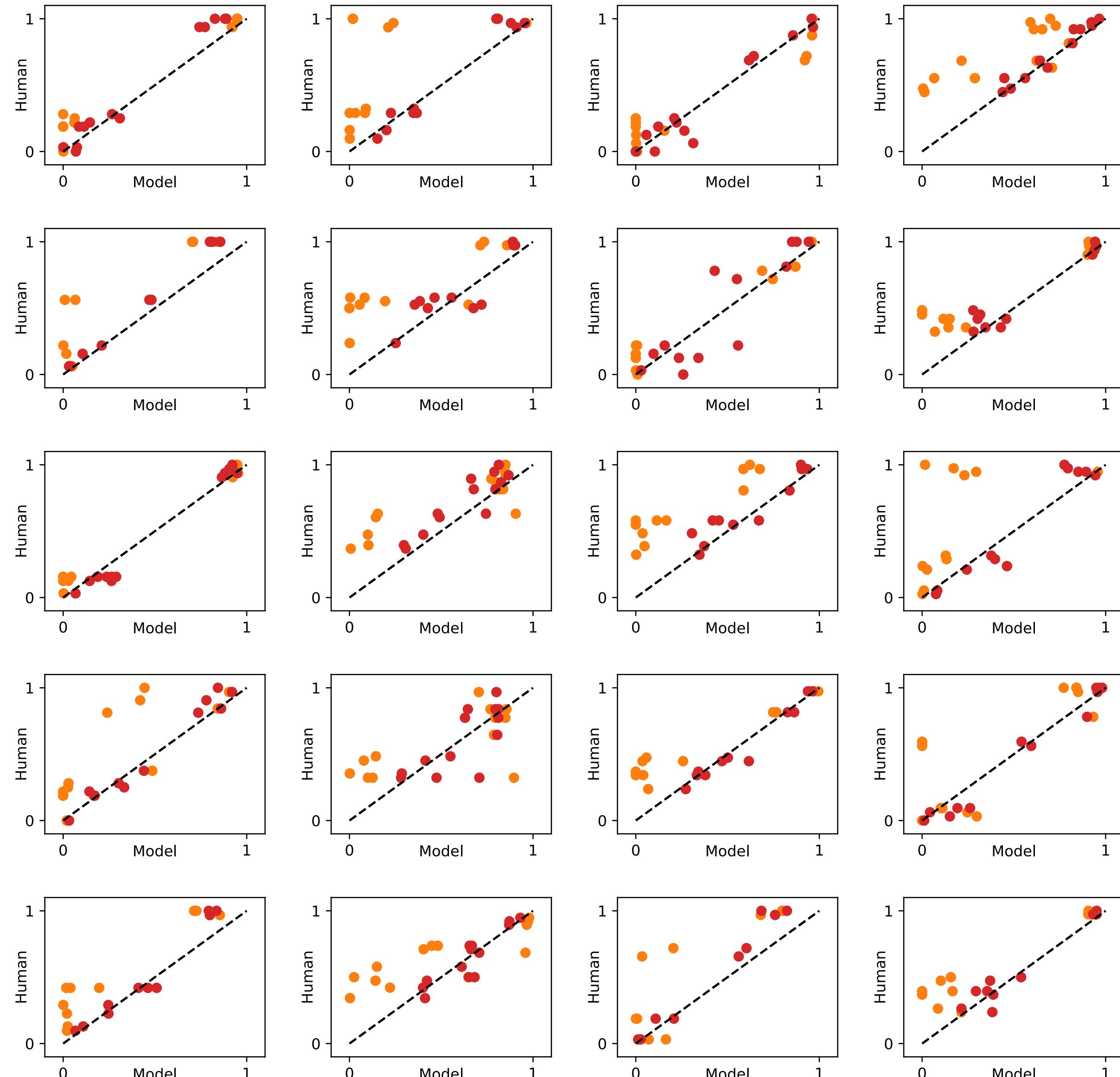


GENERATERELATION(x, C, c_i) $\rightarrow r_i$



• gns
• gns FT

Alien figures: categorization task



GNS: Best-performing GNS model from the generation task (experiment 1), evaluated without any modification

GNS FT: A *finetuned* variant of the GNS model from generation. The model is initialized with the generation parameters and further optimized using (a subset of) human categorization data

	Pearson r	Spearman r
GNS	0.761	0.637
GNS FT	0.953	0.881

Correlation with human judgements. Correlation coefficients are computed for each concept type, and the average coefficient across types is reported.