
Generative neuro-symbolic models of concept learning

by

Reuben Feinman

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Center for Neural Science

New York University

September 2023

Brenden M. Lake

Acknowledgments

First and foremost I would like to thank my thesis advisor, Brenden Lake. Brenden’s ideas and

mentorship are ingrained in all aspects of this thesis. His perspective has had a major influence

on the way that I think about the field, and I am hugely grateful for it. He has showed selfless

engagement with all aspects of my PhD, helping me apply for fellowships, write papers, and even

get a summer internship at Facebook (Meta). I’ve met very few faculty who are as attentive and

supportive of their students as Brenden is. I am indebted to him for this support.

I am also grateful to members of my thesis committee for providing invaluable feedback

during every stage of my PhD which helped shape the direction of this thesis. These include Eero

Simoncelli, Cristina Savin, and Joan Bruna. In particular, my committee helped direct my research

focus and draw connections to human behavior.

I am grateful to current and past members of the MIT CoCoSci lab for fruitful discussions

regarding the work of Chapters 2 & 3. These include Max Nye, Josh Tenenbaum, Tuan-Anh Le,

and Lucas Tian. Max was particularly helpful during early brainstorming about generative models,

and Tuan-Anh while thinking about approaches to probabilistic inference.

In addition, I would like to thanks Stéphane Deny for valuable feedback on an earlier draft of

Chapter 3, and Jay McClelland for helpful discussions regarding this work.

I’d like to thank my classmate Nikhil Parthsarathy for engaging me in fruitful conversations

and interactions throughout the course of my PhD. In addition to regular discussions, Nikhil also

provided valuable feedback on earlier drafts of Chapter 6.

ii

I am thankful to Guy Davidson and Emin Orhan for helpful discussions regarding Chapter 4.

Emin also provided valuable comments on a draft of Chapter 6.

I am grateful to all members of the Human and Machine Learning Lab (HMLL) for providing

thoughtful feedback during lab meetings at various stages of this thesis.

My research was supported by a Google PhD Fellowship in Computational Neuroscience, and

by NSF Award 1922658 NRT-HDR: FUTURE Foundations, Translation, and Responsibility for

Data Science. I am grateful to these funding sources.

I would like to thank my brother, Nick; my mother, Mary; and my late father Andy. Each of you

helped inspire me to fulfill my potential and make a contribution to science as I often dreamed of

doing growing up.

Finally, I am grateful to my wife, Charlotte, who supported me throughout all years of my PhD

and encouraged me through many challenging situations and difficult times. Your love and support

have lifted me through these hardships and I couldn’t have done it without you.

iii

Abstract

Human concepts exhibit a collection of unique qualities that together are not well-explained by

current computational methods. On the one hand, human conceptual knowledge is distinguished

for its productivity and generality: people learn new concepts very quickly from just one or a few

examples, and the representations they acquire can be applied flexibly to a variety of tasks without

retraining. In addition, people’s conceptual knowledge interacts directly with raw signals: people

learn new concepts directly from raw, high-dimensional data, capturing complex correlations and

invariances that support the recognition and generation of new examples in equally high-dimensional

media. Two modeling traditions have explained different components of these empirical phenomena,

but we lack a unified computational framework to understand and account for the collective

capabilities.

This thesis presents a new computational framework for modeling human concepts that builds

on two rich traditions in cognitive science. We hypothesize that human concept representations

include a combination of structural and statistical ingredients, and that models with an appropriate

synthesis of these ingredients will help account for the collective capabilities of human concept

learning. Our approach—dubbed Generative Neuro-Symbolic (GNS) modeling—uses the control

flow of a probabilistic program, coupled with symbolic primitives and renderers, to model the

causal and compositional processes by which concepts are formed. At the same time, it integrates

neural network subroutines to interface directly with raw data and capture complex correlations in

observations. We demonstrate two instances of this approach developed to model human concepts

iv

of handwritten characters and synthetic "alien figures." Our experiments show that GNS provides a

useful framework to understand the dual structural and statistical natures of human concepts and

account for a diversity of capabilities. Additional experiments explore alternate ways to integrate

structural and statistical representation and account for psychological phenomena, studying the

dynamics of learning-to-learn and the acquisition of inductive biases in neural network models.

v

Contents

Acknowledgments ii

Abstract iv

List of Figures x

List of Tables xxiii

List of Appendices xxv

1 Introduction 1

1.1 Tradition 1: Structured knowledge . 2

1.2 Tradition 2: Statistical knowledge . 5

1.3 Integrating structure and statistics . 8

1.4 Contents of the thesis . 10

2 Generating new concepts with neuro-symbolic models 13

2.1 Preface . 13

2.2 Introduction . 14

2.3 Related Work . 17

2.4 Omniglot Case Study . 19

2.5 Neuro-Symbolic Model . 20

vi

2.6 Alternative Models . 23

2.7 Model Hyperparameters . 25

2.8 Experiments . 26

2.8.1 Evaluation on held-out concepts . 28

2.8.2 Generating new concepts . 30

2.9 Discussion . 32

3 Few-shot learning of handwritten character concepts 34

3.1 Preface . 34

3.2 Introduction . 35

3.3 Related Work . 39

3.4 Generative Model . 41

3.4.1 Type prior . 43

3.4.2 Token model . 44

3.4.3 Image model . 44

3.5 Probabilistic Inference . 45

3.5.1 Inference for one-shot classification . 46

3.5.2 Inference for generating new exemplars 47

3.5.3 Inference for marginal image likelihoods 47

3.6 Experiments . 49

3.6.1 One-shot classification . 50

3.6.2 Parsing . 51

3.6.3 Generating new exemplars . 52

3.6.4 Generating new concepts (unconstrained) 53

3.6.5 Marginal image likelihoods . 54

3.7 Discussion . 55

vii

4 Few-shot learning of structured visual concepts 57

4.1 Preface . 57

4.2 Structured visual concepts . 59

4.2.1 Stimuli . 59

4.2.2 Few-shot learning tasks . 60

4.2.3 Symbolic Bayesian model . 61

4.3 Generative neuro-symbolic (GNS) model . 62

4.3.1 Encoder . 64

4.3.2 Decoder . 64

4.4 Training with meta-learning . 66

4.5 Experiments . 69

4.6 Discussion . 73

5 Learning inductive biases with simple neural networks 74

5.1 Preface . 74

5.2 Introduction . 75

5.3 Experimental Paradigm . 78

5.4 Experiment 1: Multilayer perceptron trained on synthetic objects 80

5.5 Experiment 2: Convolutional network trained on synthetic objects 83

5.6 Experiment 3: The onset of vocabulary acceleration 88

5.7 Discussion . 91

6 Learning a smooth kernel regularizer for convolutional neural networks 93

6.1 Preface . 93

6.2 Introduction . 94

6.3 Background . 96

6.4 Bayesian interpretation of regularization . 98

viii

6.5 Experiments . 101

6.5.1 Silhouettes . 102

6.5.2 Tiny ImageNet . 107

6.6 Discussion . 109

7 Conclusion and future directions 111

7.1 GNS model of structured blocks concepts . 117

7.1.1 Parabolas . 117

7.1.2 Parallel towers . 119

7.2 GNS model of 2D objects . 122

7.2.1 Ice cream . 123

7.2.2 House . 124

7.2.3 Building . 126

7.3 Proposal: GNS model of 3D objects . 127

Appendices 130

Bibliography 143

ix

List of Figures

1.1 A child learning the meaning of “fork." Given just one example of the new concept,

a large variety of models fit the observation. Correctly generalizing the word

presents a challenging inductive problem. 2

1.2 People’s concept representations support a variety of capabilities including: 1)

recognition, the ability to identify and distinguish new instances of the concept, 2)

generation, the ability to synthesize new examples by a variety of media, 3) parsing

an example into its parts and relations, and 4) imagination, the ability to creatively

synthesize new concepts altogether which are novel yet structurally coherent. . . . 3

1.3 A Bayesian Network depiction of the causal knowledge underlying a concept like

“bicycle." . 4

1.4 Visualization of a Restricted Boltzmann Machine (RBM), a neural network model

inspired by harmony theory (Smolensky, 1987). 6

x

1.5 A hypothetical Generative Neuro-Symbolic (GNS) model of the concept “chair."

GNS represents the concept as a probabilistic program for generating new examples,

shown here as the procedure GenerateExample. New examples are generated

part-by-part, using an image canvas C to maintain the sample state and propagate

correlations between parts. At each iteration i, the current canvas C is fed to pro-

cedure GeneratePart, a neural network subroutine that produces a symbolic

description of the next part xi. In this case, xi parameterizes a superquadratic that

conveys the part’s 3D shape. Next, the canvas C and part xi are fed to procedure

GenerateRelation, a separate neural network that produces a symbolic rela-

tion ri for how part i relates to other entities in the sample. A symbolic renderer

then processes primitives xi, ri and yields an updated canvas that contains the new

part. Finally, procedure Terminate? reads the updated canvas with another

neural network and samples a binary decision about whether to terminate the object

or continue with another part. 9

xi

2.1 Full neuro-symbolic (Full NS) model. Our Full NS model produces character

samples one stroke at a time. The procedure GenerateCharacter consists

of sequentially reading from and rendering to an image canvas, which is ini-

tialized to zero. At each time step, the current canvas I is fed to procedure

GenerateStroke, which produces a stroke sample. The canvas is first pro-

cessed by the location model, a CNN-MLP architecture that processes the image

and returns a Gaussian mixture model (GMM) distribution for the starting location

of the next stroke y. The location y is then sampled and passed along with I to the

stroke model. The stroke model processes I with a CNN and feeds the embedding to

an LSTM with attention. The LSTM samples a stroke trajectory x sequentially one

offset at a time using GMM outputs. The sampled stroke is passed to a symbolic

renderer, and the updated image canvas is then processed by a termination model

that decides whether to continue the character sample. 18

2.2 Spline representation. Raw strokes (left) are converted into minimal splines (right)

using least-squares optimization. Crosses (left) indicate pen locations and red dots

(right) indicate spline control points. 20

2.3 Predictions of the Full NS model for a test character. After each stroke, the model

receives the current image canvas (“Input Canvas") and makes a series of predictions.

Termination Prediction. First, the model predicts a termination probability p (blue

bar), i.e. a probability of terminating the drawing. Location Prediction. Next,

the model predicts a probability density for the next stroke’s starting location. The

heatmap indicates the predicted density, and the hollow red dot indicates the ground-

truth location. Stroke Prediction. Finally, the model predicts an auto-regressive

probability density for the next stroke’s trajectory (the “stroke"). Red dots indicate

the previous control points, heatmaps indicate the predicted density for the next

control point, and hollow red dot indicates the ground-truth next control point. . . 21

xii

2.4 Hierarchical LSTM model. The model samples characters one stroke at a time,

using a character-level LSTM as a memory state. At each time, the model samples

a starting location for the next stroke from a location predictor (MLP), and a stroke

trajectory from the stroke predictor (LSTM). These samples are then fed to the

model as inputs for the next time, with the location fed directly and the trajectory

processed by a stroke encoder (bi-directional LSTM). 23

2.5 Character sample comparison. Characters generated by our Full NS, H-LSTM and

Baseline LSTM models are shown side-by-side, along with samples from the BPL

forward model2 as well as ground truth characters from Omniglot. 27

2.6 Novelty of character samples. Character drawings sampled from each model were

compared to their 5 nearest neighbors from the training set. Each row corresponds

to one character sample from the model. The red box indicates the model sample,

and the 5 nearest neighbors are shown in the succeeding columns. 29

2.7 Topologically-organized character samples and their nearest Omniglot neighbors.

We drew 100 character samples from our Full NS model and organized them into

a 10x10 grid such that neighboring characters have similar drawing styles (left).

We then found the “nearest neighbor" of each sample from the Omniglot character

dataset and organized the neighbors into a corresponding 10x10 grid (right). . . . 31

2.8 Samples with stroke decomposition. Character samples produced by our Full NS

model are shown with stroke decompositions. Samples were produced at two

temperature settings (Ha & Eck, 2018, Eq.8), using T = 1.0 and T = 0.5. 32

3.1 Character drawings produced by the BPL model (left), GNS model (middle), and

humans (right). 37

xiii

3.2 New exemplars produced by the Sequential Generative (SG) model (Rezende et al.,

2016) and the Variational Homoencoder (VHE) (Hewitt et al., 2018). (a) The SG

model shows far too much variability, drawing what is clearly the wrong character

in many cases (e.g. right-most column). (b) The VHE character samples are often

incomplete, missing important strokes of the target class. 40

3.3 A generative neuro-symbolic (GNS) model of character concepts. The type model

GenerateType (P (ψ)) produces character types one stroke at a time, using an

image canvas C as memory. At each step, the current canvas C is fed to procedure

GeneratePart and a stroke sample is produced. The canvas is first processed by

the location model, a CNN-MLP architecture that samples starting location y, and

next by the stroke model, a CNN-LSTM architecture that samples trajectory x while

attending to the encoded canvas. Finally, a symbolic renderer updates the canvas

according to x and y, and a termination model decides whether to terminate the type

sample. Unique exemplars are produced from a character type by sampling from

the token model conditioned on ψ, adding motor noise to the drawing parameters

and performing a random affine transformation. 42

3.4 The initial “base" parses proposed for an image with skeleton extraction and random

walks. 45

3.5 Classification fits and parsing. (a) Posterior parses from two training images were

refit to the same test image. The first row of each grid shows the training image and

its top-3 predicted parses (best emboldened). The second row shows the test image

and its re-fitted training parses. Reconstructed test images are shown in the final

row. The correct training image reports a high forward score, indicating that I(T) is

well-explained by the motor programs for this I(c). (b) 27 character images from 3

classes are shown alongside their ground truth human parses, predicted parses from

the GNS model, and predicted parses from the BPL model. 49

xiv

3.6 Parsing. GNS predicted parses for 100 character images selected at random from

the Omniglot evaluation set. (a) A 10x10 grid of target images. (b) A corresponding

grid of GNS predicted parses per target image. 51

3.7 Generation tasks. (a) GNS produced 9 new exemplars for each of 5 target images,

plotted here next to human and BPL productions. (b) A grid of 36 new character

concepts sampled unconditionally from GNS, shown next to BPL samples. 53

3.8 Generating new concepts (unconstrained). 100 new concepts sampled uncondition-

ally from GNS are shown in a topologically-organized grid alongside a correspond-

ing grid of “nearest neighbor" training examples. To identify nearest neighbors,

we used cosine distance in the last hidden layer of a CNN classifier as a metric

of perceptual similarity. The CNN was trained to classify characters from the

Omniglot background set, a 964-way classification task. 54

4.1 Examples of alien figure stimuli and concepts, derived from Zhou et al. (2023, Fig.

3). Each figure is a compound shape formed from 1-3 basic shape primitives. The

figures are organized into concepts according to systematic formulas, visualized in

(B) as simplified parse trees from a context-free grammar (Zhou et al., 2023), and

the concepts are sampled to form trials for human experiments. 59

4.2 Categorization and generation tasks from Zhou et al. (2023). In both tasks, partici-

pants are first familiarized with a new alien figure concept through a collection of

exemplars. In categorization, participants are then shown a set of query stimuli and

asked to answer yes/no whether each is a member of the category. In generation,

participants are instead asked to generate another example of the concept using by

composing basic shape primitives with a web tool. 60

xv

4.3 Overview of GNS model. A neural encoder first reads each support example with

a convolutional neural network (CNN) and aggregates the resulting vectors into a

single, fixed-sized embedding. This encoder embedding is then passed to a GNS

decoder–expressed as probabilistic program GenerateToken–that generates

new tokens one part at a time, using an image canvas C as memory. At each

part iteration i, the current canvas C and encoder embedding x are first fed to

subroutine GeneratePart which generates the primitive ID ci of the next part.

Next, C, x and ci are passed to subroutine GenerateRelation which samples a

relation specification ri for the part. Finally, a symbolic renderer updates the canvas

according to ci and ri, and subroutine Terminate decides whether to terminate

the token. 63

4.4 GNS Subroutines. (A) Subroutine GeneratePart first reads the image canvas

with a CNN and concatenates the response with encoder embedding x. The com-

bined vector is then processed by a dense layer and passed to a softmax prediction

head that yields a categorical distribution to sample the next primitive ID ci. (B)

Subroutine GenerateRelation similarly reads the canvas with a CNN, this

time concatenating with both the encoder embedding x as well as primitive ID ci

from GeneratePart. The combined vector is processed by a dense layer and

then passed to a relation prediction head that yields a probability distribution to

sample the next relation ri (see Fig. B.1 for additional details). 65

4.5 Data distributions for meta-learning. 67

4.6 Meta-learning episodes. Each episode consists of 1) a support setX of 1-6 examples

that demonstrate the concept, and 2) a query set of additional tokens for evaluation

y1, y2, The GNS model is trained to maximize the conditional log-likelihood of

each query token given the support examples. 68

4.7 A subset of most-improved examples, measured by ℓ(GNS) - ℓ(Bayes). 71

xvi

4.8 Inductive biases captured by the GNS and Bayesian models. Two trials are shown

from each of four trial types with the partial-pattern property. Bars convey the

marginal model probability of generating a new token that matches the target bias,

and the empirical human frequency of doing so. In each trial, GNS exhibits a

stronger completion bias vs. the Bayesian model that more closely matches human

behavior. Moreover, the GNS model provides a closer match to human frequency

for the reconfigure bias, assigning a non-zero probability where Bayes does not and

showing a more modest probability where Bayes overpredicts. 72

5.1 Shape bias generalization tests. The 1st-order test, shown in (a), assesses if a child

has learned to generalize a familiar object name to a novel exemplar according to

shape. This is the first step of shape bias development. The 2nd-order test, shown in

(b), assesses if the child has learned to generalize a novel name to a novel exemplar

by shape, the second and final step of shape bias development. 76

5.2 Multilayer perceptron architecture. Shape, color and texture attribute vectors are

concatenated and fed to a 30-unit hidden layer, followed by a classification layer. 3

example input objects are shown (only one is presented at a time to the network). . 81

5.3 MLP generalization results for shape bias training with various training set sizes.

The number of categories and number of examples per category provided to the

network are shown on the x and y axes, respectively. Plots show accuracy over 1000

trials of the specified generalization test, averaged from 10 training runs. The same

data is shown in both contour and heatmap format. With 2 categories, only 8 unique

examples are feasible; thus, N/A results are blacked out. 82

xvii

5.4 Perceptual (network) similarity as a function of physical (attribute) distance. A

test stimulus is systematically altered along either its shape or color dimension.

Network similarity scores are computed between the original stimulus and its altered

counterpart. 83

5.5 Training stimuli for Experiment 2. (a) novel objects with various shapes and colors

(the first 3 input channels). (b) a few examples of textures that might be found in

the 4th input channel. 84

5.6 Convolutional network architecture. The network receives 4-channel image stimuli

and is trained to label the object in the image with a category name that is based on

shape. 85

5.7 CNN generalization results for shape bias training with various training set sizes.

Results show the average of 10 training runs. See Fig. 5.3 for details. 86

5.8 CNN generalization results for color bias training with various training set sizes.

The network is trained to label objects with category names based on color. In this

case, the generalization tests evaluate the fraction of times that the color match is

selected. Results in each grid show the average of 10 training runs. 87

5.9 Visualizing RGB channels of learned first-layer convolution filters. (a) Filters from

the CNN trained with explicit shape bias training (N=50 & K=18). Each row

corresponds to 1 of the 5 filters. The first 3 channels are shown in the ‘R’, ‘G’ and

‘B’ columns, respectively. These 3 channels are shown together in a 4th column,

labeled ‘RGB’. (b) Filters from the CNN trained to label objects with category

names based on color. In both (a) and (b), only channels 1-3 of the 4 are shown. . . 88

5.10 CNN architecture for Experiment 3. The architecture mimics the original CNN of

Experiment 2, with the exception of the softmax layer. Here, there are 3 softmax

layers (1 for each shape, color and texture), each of which extends from the fully-

connected layer. 89

xviii

5.11 Learning curves for shape bias and vocabulary. (a) shows the learning curves of

the 8 children participants from Gershkoff-Stowe & Smith (2004). Participants

were studied over the course of 5-8 lab sessions. Curves are shown for vocabulary

size (left) and cumulative shape choices (right). Here, vocabulary includes all noun

types. (b) shows analogous plots for our CNNs. 8 networks are shown, randomly

sampled from the total 20 for the sake of visibility. Here, vocabulary is measured

only for shape-based object names. 92

6.1 Kernel priors for VGG16. The layer-1 convolution kernels of VGG16, shown in (a),

possess considerable correlation structure. An i.i.d. Gaussian prior that has been fit

to the VGG layer-1 kernels, samples from which are shown in (b), captures little

of the structure in these kernels. A correlated multivariate Gaussian prior, samples

from which are shown in (c), captures the correlation structure of these kernels well. 95

6.2 SK-reg workflow. A) First, a CNN is trained repeatedly (20x) on an object recogni-

tion task. B) Next, the learned parameters of each CNN are studied and statistics

are extracted. For each convolution layer, kernels from the multiple CNNs are

consolidated, yielding a kernel dataset for the layer. A multivariate Gaussian is fit to

each kernel dataset. C) SK-reg is applied to a fresh CNN trained on a new learning

task with limited training data (possibly with a different architecture or numbers of

kernels), using the resulting Gaussians from each layer. 99

6.3 A hierarchical Bayesian interpretation of SK-reg. A point estimate of prior parame-

ters Σ is first computed with MAP estimation. Next, this prior is applied to estimate

CNN parameters θj in a new task. 101

6.4 Exemplars of the phase 1 silhouette object classes. 103

xix

6.5 Learned first-layer kernels vs. Gaussian samples. (a) depicts some of the learned

first-layer kernels acquired from phase 1 silhouette training. For comparison, (b)

shows a few samples from a multivariate Gaussian that was fit to the first-layer

kernel dataset. 104

6.6 Silhouettes phase 2 datasets. 3 examples per class are provided in both the train and

validation sets. A holdout test set with 6 examples per class is used to evaluate final

model performance. 106

6.7 Tiny ImageNet datasets. 10 classes were selected to form a 10-way classification

task. The train and validate sets each contain 10 examples per class. The holdout

test set contains 20 examples per class. 109

7.1 Neural network architecture of GNS subroutine GeneratePart for structured

blocks concepts. The network first reads the current canvas (partial object) as a 3D

voxel image and processes it with a 3D convolutional neural network (CNN) to form

a hidden representation. This hidden layer is then fed to a multi-layer perceptron

(MLP), followed by a mixture density output head (Graves, 2013) that predicts a

distribution for the next part location li ∈ R3. 117

7.2 Learning to generate parabola concepts. (a) A collection of real examples from

the parabola dataset. (b) A collection of examples from the GNS model trained

to generate parabolas. (c) The GNS model generates new examples of parabolas

part-by-part, visualized with a sequential sample tree. 118

7.3 Next-part samples from the GNS model of parabola concepts. For each of 5 different

partial-object canvases (rows), the model produces 5 unique samples of the next

part (columns). 119

xx

7.4 Learning to generate parallel towers concepts. (a) A collection of real examples

from the parallel towers dataset. (b) A collection of examples from the GNS model

trained to generate parallel towers. (c) The GNS model generates new examples of

parallel towers part-by-part, visualized with a sequential sample tree. 120

7.5 Next-part samples from the GNS model of parallel towers concepts. For each of 6

different partial-object canvases (rows), the model produces 4 unique samples of

the next part (columns). 121

7.6 Neural network architecture of the GNS subroutine GeneratePart for 2D object

concepts. 122

7.7 Ice cream concept. (a) A collection of real examples from the ice cream dataset. (b)

An equal-size collection of examples from the GNS model trained to generate ice

creams. 123

7.8 Next-part samples from the GNS model of ice cream concepts. For each of 3

different partial-object canvases (rows), the model produces 6 unique samples of

the next part (columns). 124

7.9 House concept. (a) A collection of real examples from the house dataset. (b) An

equal-size collection of examples from the GNS model trained to generate houses. 125

7.10 Next-part samples from the GNS model of house concepts. For each of 3 different

partial-object canvases (rows), the model produces 6 unique samples of the next

part (columns). 126

7.11 Building concept. (a) A collection of real examples from the building dataset. (b)

An equal-size collection of examples from the GNS model trained to generate

buildings. 127

7.12 Next-part samples from the GNS model of building concepts. For each of 6 different

partial-object canvases (rows), the model produces 7 unique samples of the next

part (columns). 128

xxi

7.13 A proposed GNS model for the 3D object concept “chair." 129

A.1 The GNS hierarchical generative model. 130

A.2 Spline representation. Raw strokes (left) are converted into minimal splines (right)

using least-squares optimization. Crosses (left) indicate pen locations and red dots

(right) indicate spline control points. 131

A.3 Token model sampling procedure. 133

A.4 Generating new exemplars with GNS. Twelve target images are highlighted in red

boxes. For each target image, the GNS model sampled 9 new exemplars, shown in

a 3x3 grid under the target. 134

A.5 Classification fits. Each row corresponds to one classification trial (one test image).

The first column shows parses from the correct training image re-fit to the test

example, and the second column parses from an incorrect training image. The

two-way score for each train-test pair is shown above the grid, and the model’s

selected match is emboldened. The 4th and 6th row here are misclassified trials. . . 135

B.1 Relation prediction architecture used in GNS subroutine GenerateRelation. . 136

B.2 Best and worst 20 human examples, measured by ℓ(GNS) - ℓ(Bayes). 139

B.3 Inductive biases captured by GNS and Bayesian models (exhaustive version). . . . 140

xxii

List of Tables

2.1 Test losses from our 3 models. Losses indicate the average negative log-likelihood

per test character (lower is better). In our “alphabet splits” task, we divide the

background set into train/test splits such that the model must generalize to new

characters from novel alphabets. In our “character splits” task, we divide the

background set such that the model must generalize to new characters from familiar

alphabets. In our “holdout” task, we provide the entire background set for training

and use the held-out evaluation set–which contains new characters from novel

alphabets–for testing. 27

3.1 Attempted Omniglot tasks by model. Attempt does not imply successful completion.

Models shown: BPL (Lake et al., 2015), RCN (George et al., 2017), VHE (Hewitt

et al., 2018), SG (Rezende et al., 2016), SPIRAL (Ganin et al., 2018), Matching

Net (Vinyals et al., 2016), MAML (Finn et al., 2017), Graph Net (Garcia & Bruna,

2018), Prototypical Net (Snell et al., 2017), and ARC (Shyam et al., 2017). 39

3.2 Test error on within-alphabet one-shot classification. The ARC model used 4x

training classes. 50

3.3 Test log-likelihood bounds. 55

xxiii

4.1 Holdout log-likelihoods. For each model, the average log-likelihood per human

token is reported in the first column. For each GNS model, we perform a paired

t-test to test for improvement over the Bayesian model. The full GNS model, and

all but one lesion model, show an improved behavioral fit over the Bayesian model,

fortified by significant t-test results. 69

6.1 CNN architecture. Layer hyperparameters include window size, stride, feature

count, and regularization weight (λ). Dropout is applied after the last pooling layer

and the fully-connected layer with rates 0.2 and 0.5, respectively. 103

6.2 Silhouettes phase 2 results. For each regularization method, the optimal regulariza-

tion weight λ was selected via grid-search. Results show the average cross-entropy

and classification accuracy achieved on the holdout test set over 10 phase 2 training

runs. 107

6.3 Tiny ImageNet SK-reg and L2 results. Table shows the average cross-entropy and

classification accuracy achieved on the holdout test set over 10 training runs. 108

B.1 Minibatch compositions for GNS model training. 137

xxiv

List of Appendices

A Additional details for Chapter 3 130

B Additional details for Chapter 4 136

C Additional details for Chapter 5 141

xxv

Chapter 1

Introduction

A signature of human intelligence is the ability to learn new concepts on the fly and make meaningful

generalizations from limited observations. Consider, for example, a child learning the meaning

of the word “fork” (Fig. 1.1). Given just one or a few examples of the new concept, a child can

effectively reason about the meaning of the word (Bloom, 2000), confirmed by the ways in which he

uses it in new contexts. Generalizing as such from limited data presents a challenging computational

problem.

Not only do people learn new concepts so quickly, but the concept representations they acquire

are often task-general, meaning they support a variety of unique capabilities (Fig. 1.2). These

include discriminative tasks like recognizing new examples, as well as creative tasks like generating

examples or imaging new concepts. In contrast, state-of-the-art machine learning methods are

typically optimized for a single task (Lake et al., 2017; Yuille & Liu, 2019), and they have difficulty

with more creative tasks such as example generation and structured imagination (Lake et al., 2019).

How do people acquire such rich representations from so little experience? What is the structure

of the representation learned, and how does this structure support flexible generalization to a variety

of tasks? Understanding these questions in computational terms represents the central motivation of

1

Adult: “this is a fork”
Fork == ???

Figure 1.1: A child learning the meaning of “fork." Given just one example of the new concept, a
large variety of models fit the observation. Correctly generalizing the word presents a challenging
inductive problem.

this thesis.

There are two long-standing traditions in cognitive science for understanding conceptual knowl-

edge, each of which has had its own successes and shortcomings in accounting for the capabilities

discussed above. The first tradition emphasizes structured knowledge for representing causal and

compositional processes. The second tradition emphasizes statistical knowledge, represented as

patterns and correlations extracted from observations. Together, these two traditions provide a

foundation for the contributions of this thesis.

1.1 Tradition 1: Structured knowledge

The first tradition centers around the idea that human concepts are embedded in intuitive theories

(Murphy & Medin, 1985). According to this perspective, human knowledge of everyday concepts

like cars, dogs and trees manifests like a scientific theory: it is predicated on a set of formalisms,

and it provides explicit explanations for observations. Importantly, people’s concepts go beyond

observable features to include a notion of the latent, unobserved causal processes.

As an example of structured knowledge, consider the graph in Fig. 1.3 which depicts a Bayesian

2

Generation

(Jongejan et al., 2016)

Parsing

98 Artificial intelligence

Figure 1

The Omniglot challenge of performing five concept learning tasks at a human level. (a) Two trials of one-shot classification, where a single image
of a new character is presented (top) and the goal is to select another example of that character amongst other characters from the same
alphabet (in the grid below). In panels (b–e), human participants and Bayesian Program Learning (BPL) are compared on four tasks. (b) Nine
human drawings (top) are shown with the ground truth parses (human) and the best model parses (machine). (c) Humans and BPL were given an
image of a new character (top) and asked to produce new examples. (d) Humans and BPL were given a novel alphabet and asked to produce
new characters for that alphabet. (e) Humans and BPL produced new characters from scratch. The grids generated by BPL are (c) (by row) 1, 2;
(d) 2, 2; (e) 2, 2. Reprinted and modified from Lake et al. [1!!].

Current Opinion in Behavioral Sciences 2019, 29:97–104 www.sciencedirect.com

98 Artificial intelligence

Figure 1

The Omniglot challenge of performing five concept learning tasks at a human level. (a) Two trials of one-shot classification, where a single image
of a new character is presented (top) and the goal is to select another example of that character amongst other characters from the same
alphabet (in the grid below). In panels (b–e), human participants and Bayesian Program Learning (BPL) are compared on four tasks. (b) Nine
human drawings (top) are shown with the ground truth parses (human) and the best model parses (machine). (c) Humans and BPL were given an
image of a new character (top) and asked to produce new examples. (d) Humans and BPL were given a novel alphabet and asked to produce
new characters for that alphabet. (e) Humans and BPL produced new characters from scratch. The grids generated by BPL are (c) (by row) 1, 2;
(d) 2, 2; (e) 2, 2. Reprinted and modified from Lake et al. [1!!].

Current Opinion in Behavioral Sciences 2019, 29:97–104 www.sciencedirect.com

(Mo et al.,
2018)

(Lake et al.,
2015)

Imagination

(Ward, 1994)

Recognition

(Lake et al., 2015)

segway

Figure 1.2: People’s concept representations support a variety of capabilities including: 1) recogni-
tion, the ability to identify and distinguish new instances of the concept, 2) generation, the ability to
synthesize new examples by a variety of media, 3) parsing an example into its parts and relations,
and 4) imagination, the ability to creatively synthesize new concepts altogether which are novel yet
structurally coherent.

network representation of the concept “bicycle.” Each node in the network represents a knowledge

variable. The variables below the dashed line are observed perceptual features, while those above

the line are latent, unobserved factors. Arrows in the network represent causal influences between

variables. In this example, the presence of latent factor “used for transportation” influences observed

feature “has wheels,” expressing the idea that wheels are used for mobility. Further, the feature

“used for transportation” also influences the latent factor “material:” if a piece of machinery will be

used for transportation, then it will likely be constructed from lightweight materials like aluminum

or carbon fiber for efficiency. The material of an object influences its observed weight, and thus,

through the intermediate latent factor “material,” the factor “used for transportation” causally

influences feature “weight.”

The role of causality in human concept representations has been demonstrated in a variety of

different ways. Studies have shown that people’s representations of natural kinds include beliefs

about a core, unobserved essence that is invariant to changes of observed features (S. A. Gelman,

3

Features

Latent Factors
used for

transportation

has wheels

material

weight

observed
unobserved

Figure 1.3: A Bayesian Network depiction of the causal knowledge underlying a concept like
“bicycle."

2003; Keil, 1989). Moreover, manipulating people’s causal knowledge about the features of objects

has been shown to influence the ways that they learn and generalize (Rehder, 2003; Rehder &

Hastie, 2001). Other works provide evidence for analysis-by-synthesis theories of perception (Eden,

1962; Halle & Stevens, 1962; Neisser, 1966; Bever & Poeppel, 2010): for instance, people’s causal

knowledge about how characters are drawn influences the way they recognize new characters (Freyd,

1983) and how they perceive motion in characters presented stroke-by-stroke (Tse & Cavanagh,

2000).

Structured knowledge is traditionally represented using symbolic primitives in a “language-of-

thought” (Fodor, 1975). Symbolic models provide combinatorial syntax and semantics, offering

a compositional representation that explains the systematicity of mental representation (Murphy,

2002). This approach was paramount in classical models of the mind, which took inspiration from

computer architecture and emphasized logical representations and symbol manipulation. Concepts

were viewed as rigid definitions or rules for categorization (Bruner et al., 1956). Although useful as

a high-level framework, these logical representations fall short of explaining the majority of natural

concepts (Murphy, 2002). Moreover, classical symbolic models like these do not account for the

ways that people learn new concepts from experience, an emphasis of the second tradition.

4

One important shortcoming of the structured knowledge view is its lack of account for in-

complete knowledge, a psychological phenomenon exemplified by Rozenblit & Keil (2002). If

conceptual knowledge is embedded in theories, then we would expect that people are able to provide

explanations of everyday concepts; however, Rozenblit & Keil (2002) showed that this is often not

the case. When pressed to provide explanations about the workings of a speedometor, a zipper,

a piano key, or a flush toilet, human participants from the study could only provide fragments of

explanations for these entities. Furthermore, the level that participants rated their own knowledge of

these concepts exhibited a sharp decline after being asked for an explanation. The authors called

this phenomenon the “illusion of explanatory depth:" although we might think that we understand

the workings of things like pianos and toilets, when pressed for explanations, we realize that our

knowledge is actually very sparse.

1.2 Tradition 2: Statistical knowledge

The second tradition of research prioritizes statistical knowledge, a more amorphous form of

conceptual knowledge that manifests patterns and correlations from observations. The meaning of a

word, for example, is derived from its patterns of co-occurrence with other words (Deerwester et al.,

1990). Similarly, latent representations of objects and other stimuli arise from accommodations of

"suspicious coincidences" noted in the data (Barlow, 1989).

Central to the statistical tradition is the parallel distributed processing (PDP) approach of mod-

eling cognitive processes (Rumelhart et al., 1987; Rogers & McClelland, 2004), also known as

connectionism. In this approach, concepts are modeled with neural networks, a form of represen-

tation that consists of a hierarchy of neuron-like processing units. Using a technique known as

backpropagation, neural networks can be trained to perform a variety of tasks including: learning

exemplar-based representations of categories (Kruschke, 1992), assigning syntax to words from

text sequences (Elman, 1990), and reasoning about semantic properties of natural kinds (Rogers &

5

McClelland, 2004). Importantly, these models can learn directly from raw data with little or no prior

knowledge about a domain. Training neural networks to estimate unknown density functions and

decision surfaces is considered an example of nonparametric (or model-free) statistical inference

(Geman et al., 1992).

Figure 1.4: Visualization of a Restricted Boltzmann Machine (RBM), a neural network model
inspired by harmony theory (Smolensky, 1987).

As a demonstrative example of how conceptual knowledge is represented in this tradition,

consider the Restricted Boltzmann Machine (RBM)—a neural network model inspired by harmony

theory (Smolensky, 1987)—depicted in Fig. 1.4. The RBM assigns probability to observations

(“representational features") with an energy-based density model that is marginalized over a set

of unobserved latent factors (“knowledge atoms"). During the training process, recurring feature

patterns are detected and explained away by causal factors, following the “suspicious coincidences"

learning principle (Barlow, 1989). To demonstrate this principle, consider an alien who visits

Earth for the first time and is unfamiliar with human vehicles. The alien observes a number of

objects rolling around with four wheels and a passenger compartment. In absence of a model for

this compound entity, this repeated arrangement of parts is highly suspicious. Rather than accept

this observation as coincidence, the alien creates a new knowledge atom “vehicle" to explain the

6

compound.

In a seminal work, Rogers & McClelland (2004) studied the development of semantic knowledge

in a neural network trained to predict the attributes of biological kinds such as “canary," “rose," and

“salmon." Attributes included whether or not the entity is an animal, whether it grows, and whether it

has bark, among other things. Given a particular category as input, the network outputs probabilities

for each of the possible attributes, and it is trained to maximize the likelihood of the correct

attributes. Weights of the network are updated iteratively using the gradient-based backpropagation

algorithm. Rogers & McClelland (2004) showed that the hidden units of their neural network learns

to represent structured semantic knowledge about the organization of biological kinds. Importantly,

these structured hypotheses emerge without the constraints of a formal hypothesis space.

More recently, neural network models have become widely adopted in machine learning research

and have demonstrated powerful capabilities in domains including object recognition, speech

recognition, and control (LeCun et al., 2015). Beginning with the success of AlexNet (Krizhevsky

et al., 2012), a variety of neural networks for image recognition have achieved increasingly stronger

performance on the challenging ImageNet benchmark. Sequence models such as Seq2Seq (Sutskever

et al., 2014) and Transformer (Vaswani et al., 2017) have demonstrated promising results on natural

language processing (NLP) tasks including translation and generation, a domain that has seen a very

recent explosion of attention.

Although the computational approaches from this tradition help explain how people learn from

raw data and capture complex patterns, neural network models have been criticized for lacking

the type of compositional representation needed to support systematic generalization (Fodor &

Pylyshyn, 1988; Marcus, 2003; Lake & Baroni, 2018). The internal models and representations that

people develop can be applied flexibly to new tasks with little or no training experience, and neural

networks provide an insufficient account for this type of flexible model building (Lake et al., 2017).

Moreover, neural network models have difficulty replicating human behavior in generative tasks that

require structured imagination and other creative abilities; even with relatively simple handwritten

7

characters, neurally-grounded models do not yet explain how people generate new concepts and

new examples that are novel yet structurally consistent with familiar ones (Lake et al., 2019).

1.3 Integrating structure and statistics

The paradigms of tradition 1 and 2 each have unique strengths that help account for human concepts.

Structured representations can explain the task-generality of concepts, attributing this flexibility

to an explicit model of causal and compositional processes. On the other hand, statistical models

help explain how concepts arise from experience and manifest patterns in observed data. A central

motivation of this thesis is to explore new models of concepts that offer a synthesis of the structured

and statistical traditions, combining the best qualities of each approach.

Previous efforts to integrate these two traditions have demonstrated ways of performing statistical

inference over structured representations (Tenenbaum et al., 2011), offering an explanation for

how concepts are learned from experience and providing an account of their graded nature. This

includes models of concept learning as Bayesian inference over fully-symbolic expressions in

formal logical (Goodman et al., 2008; Piantadosi et al., 2016), or models of inductive reasoning

supported by structured intuitive theories (Kemp & Tenenbaum, 2009). In accounts of this nature,

statistics is primary in selecting between structured symbolic hypotheses (Kemp & Tenenbaum,

2008; Perfors et al., 2011; Lake et al., 2015; Lake & Piantadosi, 2020), but plays little role in

forming the individual hypotheses themselves. Specifically, each hypothesis may only have a

few parametric distributions that need to be inferred, if any. Although more flexible than a priori

structural constraints, models of this kind still make many assumptions, and they have not yet

tackled the types of raw, high-dimensional stimuli that are distinctive of connectionist neural

network models.

This thesis explores new ways to integrate the structured and statistical traditions and develop

models that synthesize their key ingredients. The primary contribution is a new framework for

8

computational models of concepts that we denote Generative Neuro-Symbolic (GNS) modeling.

Similar to the symbolic probabilistic models discussed above, a GNS model represents the compo-

sitional and causal structure of concepts, helping to support flexible generalization to a range of

tasks. However, we advocate for a new layer of statistics that allows the model to represent complex

correlations and interact directly with raw, high-dimensional data.
Proposal: Generative Neuro-Symbolic (GNS) modeling

GENERATEPART

GENERATERELATION
α = 1

3 , β = 1
2

TERMINATE?

"yes"

supports()

Canvas:
C

RENDER

New example

procedure GENERATEEXAMPLE
C 0 . Initialize blank canvas
for i = 1...,1 do

xi GENERATEPART(C) . Sample part
ri GENERATERELATION(C, xi) . Sample relation
C RENDER(C, xi, ri) . Render new canvas
if TERMINATE?(C) then . Sample termination (y/n)

break
return C . Return example

1

Figure 1.5: A hypothetical Generative Neuro-Symbolic (GNS) model of the concept “chair." GNS
represents the concept as a probabilistic program for generating new examples, shown here as the
procedure GenerateExample. New examples are generated part-by-part, using an image canvas
C to maintain the sample state and propagate correlations between parts. At each iteration i, the
current canvas C is fed to procedure GeneratePart, a neural network subroutine that produces a
symbolic description of the next part xi. In this case, xi parameterizes a superquadratic that conveys
the part’s 3D shape. Next, the canvas C and part xi are fed to procedure GenerateRelation, a
separate neural network that produces a symbolic relation ri for how part i relates to other entities
in the sample. A symbolic renderer then processes primitives xi, ri and yields an updated canvas
that contains the new part. Finally, procedure Terminate? reads the updated canvas with another
neural network and samples a binary decision about whether to terminate the object or continue
with another part.

A GNS model represents concepts as probabilistic programs with neural network subroutines

(Fig. 1.5). As with traditional probabilistic programs, the control flow of a GNS program is an ex-

plicit representation of the causal generative process that produces new concepts and new examples.

9

Moreover, the modularity provided by repeated calls to procedures such as GeneratePart en-

sures a representation that is compositional, offering an appropriate inductive bias for combinatorial

generalization. Unlike fully-symbolic probabilistic programs, however, the distribution of parts and

correlations between parts in GNS are modeled with neural networks. This architectural choice

allows the model to learn directly from raw data, capturing nonparametric statistics while requiring

only minimal prior knowledge.

The control flow of a GNS program is depicted by the psuedocode in Fig. 1.5. An external

image canvas C is used to maintain the state of the sample, providing a controlled memory for the

program. Concepts are generated part-by-part by iteratively sampling the next part conditioned on

the current partial-sample using neural network subroutines. Rather than generate raw data such as

image pixels, GNS subroutines generate a symbolic representation of the next part, and a symbolic

relation that describes how it should relate to the existing canvas. These symbolic primitives are

translated by a rendering engine that produces an updated partial-object canvas with the new part.

This thesis describes a series of studies that test the GNS modeling framework in different

contexts. We hypothesize that GNS models will provide a more comprehensive account of human

concept learning in a variety of domains, offering improvements over models with both purely-

symbolic and purely-neural architecture.

1.4 Contents of the thesis

Each of the remaining chapters of this thesis is based on a unique publication (excluding Chapter 7,

a new conclusion). I begin each chapter with a preface that references the associated publication,

provides additional context about the paper and discusses how it fits into the broader thesis narrative.

Chapters 2 & 3 describe an instance of the generative neuro-symbolic (GNS) modeling frame-

work developed for the Omniglot challenge (Lake et al., 2015) of task-general representation

learning with handwritten character concepts. The computational experiments are accompanied by

10

a rich human behavioral dataset collected in a previous study (Lake et al., 2015). Chapter 2 first

develops a generative neuro-symbolic model to represent a prior over characters in general, used for

generating and evaluating new character concepts unconditioned on any particular category. Chapter

3 then expands this prior into a full hierarchical model, adding a differentiable image renderer and

developing procedures for approximate probabilistic inference from image data. Together these

ingredients enable our model to perform four distinct concept learning tasks that people perform.

Chapter 4 investigates another instance of the GNS approach designed to model human few-shot

learning of synthetic “alien figure" concepts. In contrast with handwritten characters, where the

variability between different examples of a concept is limited to simple motor and affine noise,

each alien figure concept represents a larger class of stimuli with more inter-token variability. This

chapter is a collaborative work with another Ph.D. student, Yanli Zhou. Yanli’s contribution is

to design the human behavioral experiment and developed a preliminary computational model

based on Bayesian inference. My own thesis contribution is to develop a GNS model that accounts

for the rich and unique ways that human participants generalize from examples in the behavioral

experiment. The breakdown of contributions is discussed further in Section 4.1.

Chapters 5 and 6 explore other ways that inductive biases can be learned by and imposed upon

neural network models. These efforts constitute another attempt to unify structured and statistical

representation, although the approach diverges slightly from the preceding chapters. Unlike GNS

models, which impose a strong inductive bias through causal generative modeling and symbolic

program execution, the models presented in these chapters consider weaker inductive biases that

manifest as parameter priors and learned similarity metrics. These models lie closer to "neuro" on

the neuro-symbolic modeling spectrum, incorporating only minimal symbolic structures through

notions of object shape and perceptual smoothness.

Finally, Chapter 7 ends with some concluding remarks and a discussion of future directions

for the GNS modeling framework. Some of these directions include preliminary results from a

GNS model of simplified object concepts. These results are unpublished and are not yet ready for

11

submission, but they help set a path towards achieving outstanding research objectives.

12

Chapter 2

Generating new concepts with

neuro-symbolic models

2.1 Preface

This chapter represents the first of a two-part study on handwritten character concepts from the

Omniglot dataset (Lake et al., 2015). The focus of this first study was to develop a character

prior–i.e., a generative model of handwritten characters in general–which follows the GNS formula.

By studying the character prior in isolation, we are able to rigorously test the GNS framework by

focusing on generative models of handwriting and reserving image representation for later work.

We compare our hybrid neuro-symbolic generative model against alternative models at different

parts of the neuro/symbolic spectrum, using canonical evaluations including log-likelihood and

sample comparison. Importantly, the alternative models are selected to parametrically vary in their

level of inductive bias and architectural constraint. In Chapter 3, we later use this model as the type

level of a type-token hierarchical Bayesian model that performs four distinct conceptual tasks.

The work of this chapter was published in Feinman & Lake (2020). Before its publication,

13

generative neural network models applied to Omniglot were not compositional and did not directly

model the causal drawing process, and they were shown to produce new characters in un-human

ways. At the same time, the symbolic Bayesian Program Learning (BPL) model (Lake et al.,

2015)–which is fit directly with human drawing data–makes many simplifying assumptions and

does not adequately capture the rich correlation structure in human handwriting. Our interest with

this study was to develop a new generative model of characters that models causal handwriting data

directly, maintains an explicit notion of parts, and effectively captures the complex correlations

present in human drawings.

We developed a handwritten character prior that follows the GNS modeling formula: concepts

are represented as probabilistic programs with neural network subroutines, and symbolic primitives

and renderers are used to iteratively update the state of a sample. Using this formula, along with

a powerful and recent paradigm for generating handwriting known as mixture networks (Graves,

2013), we achieve an improved likelihood account of human-drawn character concepts compared to

alternative models. We also find that our model produces new character samples that are highly

consistent with human drawings, yet sufficiently distinct from their nearest training example.

2.2 Introduction

People can synthesize new concepts in imaginative ways; architects design new houses, chefs

invent new recipes, and entrepreneurs create new business models. The resulting productions

exhibit novel variations but maintain important structural consistencies with known entities (Ward,

1994). In contrast, state-of-the-art generative models from machine learning struggle with creative

imagination, producing samples that either closely mimic the training data or that exhibit anomalous

characteristics (Lake et al., 2019). How do people create novel yet coherent new concepts? How

can we understand these abilities in computational terms?

Human conceptual knowledge plays a central role in creative generalization. A chef knows not

14

only a repertoire of recipes, but also understands that recipes are built from reusable ingredients

(e.g. carrots, flour, butter), and that these ingredients satisfy specific roles (thickening, seasoning,

greasing). Furthermore, a chef understands which ingredients can substitute for others (e.g. butter for

oil when greasing) and which should never be combined (e.g. ketchup and milk). In addition, they

understand that recipes are composed of reusable causal procedures (cutting, whisking, browning),

and they know how to compose these procedures in terms of order and substitutability. This causal

and compositional knowledge is essential to understanding a culinary concept, as opposed to merely

executing it, and is essential to a chef’s ability to create new culinary concepts such as “carrots

tartar" or “pea guacamole."

There have been two traditions of work on computational models of conceptual knowledge.

The first tradition emphasizes “structured knowledge" for capturing relations between concepts

and correlations between conceptual features, viewing concepts as embedded in intuitive theories

(Murphy & Medin, 1985) or capturing structured knowledge through symbolic representations

such as hierarchies, trees, grammars and programs (Kemp & Tenenbaum, 2008, 2009; Tenenbaum

et al., 2011). This tradition has prioritized the compositional and causal nature of conceptual

knowledge, as emphasized through accounts of concept learning as program induction (Goodman et

al., 2008; Stuhlmuller et al., 2010; Lake et al., 2015; Goodman et al., 2015; Ellis et al., 2018; Lake

& Piantadosi, 2020). The Bayesian Program Learning (BPL) framework (Lake et al., 2015), for

example, demonstrates how to learn programs from images to express the causal and compositional

nature of concepts and background knowledge. Although these models offer a convincing account

for how strong inductive biases support flexible generalization, they often make simplifying and rigid

parametric assumptions about the distributions of concepts in pursuit of a structured representation.

As a result, they so far have been unsuccessful in characterizing the most complex correlations and

invariances associated with human concepts in raw, high-dimensional stimulus spaces.

The second tradition in models of conceptual knowledge emphasizes “statistical knowledge," a

more amorphous form of background knowledge that is often not amenable to symbolic descrip-

15

tion. In the statistics view, conceptual knowledge manifests as complex systems of patterns and

correlations recorded from observations. The meaning of a word, for example, can be derived

from its patterns of co-occurrance with other words (Deerwester et al., 1990). Similarly, latent

representations of objects and other sensory stimuli can be derived from “suspicious coincidences"

noted in the data (Barlow, 1989). The statistics view emphasizes emergence, where conceptual

knowledge emerges from the interaction of simpler processes, as operationalized through training

neural network architectures (McClelland, 2010). Although a powerful modeling tool, standard

neural networks do not explicitly model the compositional and causal structure of concepts. As

result, they have difficulty generalizing to examples that vary systematically from training (Marcus,

2003; Lake & Baroni, 2018), and to novel tasks, especially those that demand more generative and

creative abilities (Lake et al., 2017, 2019).

Our goal in this paper is to explore generative models of concepts at the interface of these

structured and statistical traditions, with the aim of combining strengths from both approaches.

Previous efforts to integrate these traditions have demonstrated ways of performing statistical

inference over structured representations (Tenenbaum et al., 2011). This includes models of concept

learning as Bayesian inference over fully-symbolic expressions in formal logical (Goodman et al.,

2008; Piantadosi et al., 2016), or models of inductive reasoning supported by structured intuitive

theories (Kemp & Tenenbaum, 2009). In accounts of this nature, statistics is primary in selecting

between structured symbolic hypotheses (Kemp & Tenenbaum, 2008; Perfors et al., 2011; Lake

et al., 2015; Lake & Piantadosi, 2020), but plays little role in forming the individual hypotheses

themselves. Specifically, each hypothesis may only have a few parametric distributions that need to

be inferred (Gaussians, multinomials, etc.), if any.

Here we aim to more thoroughly integrate the structured and statistical traditions through

hybrid neuro-symbolic generative models. Our goal is to devise a causal generative model with

explicit compositional structure, and with complex correlations represented implicitly through neural

networks rather than simple parametric distributions. We use simple visual concepts – handwritten

16

characters from the world’s languages – as a case study for exploring neuro-symbolic models of

concept generation. The Omniglot dataset (Lake et al., 2015) of handwritten characters provides an

excellent preliminary modeling environment: it contains a large number of natural, simple concepts

that people learn and use, and it has been explored extensively in prior work from both cognitive

science and AI. Following the mixture density network framework for handwriting generation

(Graves, 2013), we explore three distinct generative neural architectures, varying the strength

and form of inductive bias imposed on the model, including their position on the neuro-symbolic

spectrum and the fidelity in which compositionality and causality are presented. We evaluate the

generalization capacity of these models by comparing their log-likelihoods on a holdout set of

characters. Furthermore, we analyze the samples produced by each model, looking for characters

that are qualitatively consistent but sufficiently dissimilar from the training set. We find that a hybrid

neuro-symbolic architecture with the strongest form of compositional structure exhibits the best

generalization performance, and that it generates characters that are highly consistent with human

drawings. In contrast, the generic neural models exhibit weaker performance on the holdout set,

and they produce characters that more closely mimic the training examples.

2.3 Related Work

In the machine learning community, there have been a number of works studying generative neural

network models for handwritten characters, including DRAW (Gregor et al., 2015), AIR (Eslami et

al., 2016) and SPIRAL (Ganin et al., 2018). Although these models learn a procedure to generate

new characters, they do not use the human drawing data from Omniglot, and therefore the generative

process may not reflect the true causal processes of human character production. Our goal is

different in that we aim to model the causal process of human handwriting directly from drawing

data.

17

GenerateStroke(I)

location model p(y ∣ I)
stroke model p(x ∣ y, I)

CNN MLP
CNN LSTM

y

I
I

I I, y

attention
p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)

…

y ∼ p(y
∣ I)

I, y, x

x ∼ p(x
∣ y, I)

procedure GENERATECHARACTER
I 0 . Initialize image canvas
while true do

[yi, xi] GenerateStroke(I) . Sample stroke location & trajectory
I Render(yi, xi, I) . Render stroke to image canvas
vi ⇠ p(v | I) . Sample termination indicator
if vi then

break . Terminate sample
return I . Return character image

1

termination model p(v ∣ I)

CNN MLPI
1

0

Figure 2.1: Full neuro-symbolic (Full NS) model. Our Full NS model produces character samples
one stroke at a time. The procedure GenerateCharacter consists of sequentially reading from
and rendering to an image canvas, which is initialized to zero. At each time step, the current canvas
I is fed to procedure GenerateStroke, which produces a stroke sample. The canvas is first
processed by the location model, a CNN-MLP architecture that processes the image and returns
a Gaussian mixture model (GMM) distribution for the starting location of the next stroke y. The
location y is then sampled and passed along with I to the stroke model. The stroke model processes
I with a CNN and feeds the embedding to an LSTM with attention. The LSTM samples a stroke
trajectory x sequentially one offset at a time using GMM outputs. The sampled stroke is passed to
a symbolic renderer, and the updated image canvas is then processed by a termination model that
decides whether to continue the character sample.

Ha & Eck (2018) introduced a neural network architecture called Sketch-RNN to model human

drawing data for simple objects like cats, firetrucks, and windmills. Although their goal loosely

resembles our own, the Sketch-RNN model is trained on just a single class of objects at one time

(e.g. “cat"), and it receives 70,000 examples from the class. In contrast, our motivation is to model

human conceptual knowledge of handwriting concepts in general. This background knowledge

plays a central role in creative generalization, enabling people to synthesize new concepts that

deviate from the observed entities. We train our models on many character classes at once, providing

only 20 training examples of each class and asking them to generate new character concepts. The

Sketch-RNN model has not been applied in this way.

Most related to our work is the Bayesian Program Learning (BPL) approach of Lake et al. (2015)

that was also applied to the simple visual concepts in Omniglot. BPL is a parametric Bayesian model

18

that captures causal, compositional structure in human background knowledge of handwriting, and

shows that these ingredients are important for few-shot learning of new character concepts. Beyond

supporting few-shot learning, the BPL character prior can also generate new character concepts

by unconditional sampling. Although a powerful demonstration of compositional representation,

the BPL parametric model makes many simplifying assumptions about characters. For example,

it assumes that strokes in a character are generated largely independently from each other in the

prior (although they are strongly correlated in the posterior). As result, new characters generated

by the model often lack the rich correlation structure of human drawings. We build on this work

and develop a new neuro-symbolic model that represents the compositional structure of characters

while using neural networks to capture richer correlations.

2.4 Omniglot Case Study

We use simple visual concepts as a case study for modeling conceptual structure. The Omniglot

dataset contains human drawings of characters from 50 unique alphabets, providing a large set of

cognitively natural concepts that are simple enough for evaluating models (Lake et al., 2015, 2019).

In our experiments, we use drawings from the Omniglot background set to train our models, which

contains 30 alphabets and a total of 19,280 unique drawings. We also use 10 alphabets from the

Omniglot evaluation set as a holdout set for quantitative evaluations, reserving the remaining 10

alphabets for future work on few-shot classification.

In the drawing data, a stroke is represented as a variable-length sequence of pen locations

{z1, ..., zT}, with zi ∈ R2 (Fig. 2.2, left). During pre-processing, we convert each stroke into a

minimal spline representation using least-squares optimization (Fig. 2.2, right), borrowing the

B-spline tools from Lake et al. (2015). The number of spline control points depends on the stroke

complexity and is determined by a residual threshold. Furthermore, we removed small strokes using

a threshold on the trajectory length. These processing steps help suppress noise and emphasize

19

signal in the drawings. Our generative models are trained to produce character drawings, where

each drawing is represented as an ordered set of splines (strokes). The number of strokes, and the

number of spline coordinates per stroke, are allowed to vary.

original stroke minimal spline

Figure 2.2: Spline representation. Raw strokes (left) are converted into minimal splines (right) using
least-squares optimization. Crosses (left) indicate pen locations and red dots (right) indicate spline
control points.

2.5 Neuro-Symbolic Model

Our primary interest is to test whether a hybrid neuro-symbolic model can capture the compositional,

causal structure in a large corpus of simple natural concepts. The architecture and sampling

procedure of our hybrid model, which we call the “Full Neuro-Symbolic" (Full NS) model, is given

in Fig. 2.1. Compared to generic neural networks, the Full NS model lies closer to structure on the

structure-statistics spectrum, possessing a much stronger inductive bias. As in BPL (Lake et al.,

2015), the generative model is a probabilistic program that captures real compositional and causal

structure by sampling characters as a sequence of parts and locations/relations. Unlike BPL, the

model has a symbolic engine that renders each part to an image canvas before producing the next

one, and parts are generated using a powerful recurrent neural network that encodes and attends

to the current canvas. Although correlations between parts can be captured through a process of

rendering and then encoding, the model does not allow arbitrary information to flow between parts

and variables as in monolithic neural networks.

The Full NS model represents a character as a sequence of strokes, with each stroke decomposed

20

Input
Canvas

Termination
Prediction

Location
Prediction

Stroke
Prediction

stroke 1

stroke 2

stroke 3

stroke 4

Figure 2.3: Predictions of the Full NS model for a test character. After each stroke, the model
receives the current image canvas (“Input Canvas") and makes a series of predictions. Termination
Prediction. First, the model predicts a termination probability p (blue bar), i.e. a probability of
terminating the drawing. Location Prediction. Next, the model predicts a probability density for
the next stroke’s starting location. The heatmap indicates the predicted density, and the hollow
red dot indicates the ground-truth location. Stroke Prediction. Finally, the model predicts an
auto-regressive probability density for the next stroke’s trajectory (the “stroke"). Red dots indicate
the previous control points, heatmaps indicate the predicted density for the next control point, and
hollow red dot indicates the ground-truth next control point.

into a starting location yt ∈ R2, conveying the first spline control point, and a stroke trajectory

xt = {∆1, ...,∆N}, conveying deltas between spline control points. It generates characters one

stroke at a time, using a symbolic rendering procedure called Render, as an intermediate processing

step after forming each stroke. An image canvas I is used as a memory state to convey information

about previous strokes. At each time step t, the next stroke’s starting location and trajectory are

sampled with procedure GenerateStroke. In this procedure, the current image canvas I is first

read by the location model (Fig. 2.1; bottom middle), a convolutional neural network (CNN) that

processes the image and returns a probability distribution for starting location yt:

yt ∼ p(yt | I).

A visualization of the density p(yt | I) is given in Fig. 2.3, “Location Prediction." The starting

location yt is then passed along with the image canvas I to the stroke model (Fig. 2.1; bottom right),

21

a Long Short-Term Memory (LSTM) architecture with a CNN-based image attention mechanism

inspired by K. Xu et al. (2016). The stroke model samples the next stroke trajectory xt sequentially

one offset at a time, selectively attending to different parts of the image canvas at each sample step

and combining this information with the context of yt:

xt ∼ p(xt | yt, I).

A visualization of the auto-regressive density p(xt | yt, I) is given in Fig. 2.3, “Stroke Prediction."

Finally, a similar network decides when to terminate the character, p(vt | I).

Mixture Outputs

Both our location model and stroke model follow a technique from Graves (2013), who proposed

to use neural networks with mixture outputs to model handwriting data. The parameters θ =

{π1:K , µ1:K , σ1:K , ρ1:K} output by our network specify a Gaussian mixture model (GMM) with

K components (Fig. 2.1; colored ellipsoids), where πk ∈ (0, 1) is the mixture weight of the kth

component, µk ∈ R2 its means, σk ∈ R2
+ its standard deviations, and ρk ∈ (−1, 1) its correlation.

In our location model, a single GMM describes the distribution p(yt | I). In our stroke model, the

LSTM outputs one GMM at each timestep, describing p(∆t|∆1:t−1, yt, I).

Training

Our Full NS model provides a density function which can be used to score the log-likelihood for

any character drawing. We train the model to maximize the log-likelihood (minimize log-loss) of

the training set drawings, using mini-batch gradient descent with a batch size of 200 and the Adam

update rule.

22

…

y1

x1

y2

x2

y1

x1

yT

xT

yT−1

xT−1

LSTM LSTM LSTM

Location

yi

Stroke

xi

: stroke encoder

: location predictor

: stroke predictor

Figure 2.4: Hierarchical LSTM model. The model samples characters one stroke at a time, using a
character-level LSTM as a memory state. At each time, the model samples a starting location for
the next stroke from a location predictor (MLP), and a stroke trajectory from the stroke predictor
(LSTM). These samples are then fed to the model as inputs for the next time, with the location fed
directly and the trajectory processed by a stroke encoder (bi-directional LSTM).

2.6 Alternative Models

In addition to our Full NS model, we explored two alternative models with more generic neural

network architectures. In each alternative, we lesioned key structural ingredients of the Full NS

model, hoping to test the importance of these ingredients to model performance.

Hierarchical LSTM

As one alternative neural model, we explored a hierarchical recurrent architecture (Sordoni et al.,

2015; Ling et al., 2016; Chung et al., 2017), which we denote “Hierarchical LSTM" (H-LSTM).

Like our Full NS architecture, the H-LSTM model is trained on causal data demonstrating how

people actually produce drawings of characters. In addition, it models the compositional structure

of characters by separating them into explicit stroke parts, which defines the hierarchy in the

hierarchical LSTM. Unlike our Full NS model, however, the H-LSTM has no renderer and thus

lacks any explicit causal knowledge of how motor actions become raw images of inked characters.

23

Instead, information about the previous strokes is written to memory via recurrent connections and

gating mechanisms. These transformations can propagate arbitrary correlations, and they must be

learned entirely from the data.

Specifically, at each time step t, the previous stroke xt−1 is read by a stroke encoder fenc, a

bi-directional LSTM that processes the stroke and returns a fixed-length vector (red box in Fig. 2.4).

This vector is then passed as an input to the character LSTM along with previous location yt−1 and

previous hidden state ht−1:

ht = fLSTM(yt−1, fenc(xt−1), ht−1).

The new hidden state ht is then fed to the location model p(yt | ht), a multi-layer perceptron that

outputs a GMM distribution for the next stroke’s starting location yt (green box in Fig. 2.4). The

location is sampled from this distribution and passed as an input along with ht to the stroke model

p(xt | ht, yt), an LSTM that samples a stroke trajectory one offset at a time with GMM outputs

(yellow box in Fig. 2.4):

yt ∼ p(yt | ht)

xt ∼ p(xt | ht, yt).

Baseline LSTM

A second alternative is even less structured and represents the most purely statistical architecture

we examined. For this model, we explored a naive unrolled LSTM, denoted “Baseline." This model

is a reproduction of the unconditional version of Sketch-RNN (Ha & Eck, 2018, Sec 3.3). Similar

to Full NS and H-LSTM, the Baseline LSTM is trained on causal data demonstrating the process of

producing characters; however, the architecture does not explicitly take compositional structure into

account. Instead, it uses a single RNN to model a character as one long sequence of pen actions

24

with stroke breaks.

Following Sketch-RNN, we expand the binary pen state variable vt ∈ {0, 1} from Graves (2013)

to a ternary variable vt ∈ {0, 1, 2} to handle multi-stroke drawings. Value 0 indicates that we are

continuing the current stroke, 1 that we are ending the current stroke and starting a new one, and 2

that we are ending the drawing. The initial hidden and cell states of the LSTM are set to zero, and

at each time step t, the previous offset ∆t−1, previous pen state vt−1, and previous hidden state ht−1

are fed as inputs to the LSTM, which outputs new hidden state ht:

ht = fLSTM(∆t−1, vt−1, ht−1).

An output layer receives ht and returns a categorical distribution for next pen state vt, and a GMM

for next offset ∆t:

θv = fv(ht), vt ∼ p(vt | θv)

θ∆ = f∆(ht), ∆t ∼ p(∆t | θ∆).

2.7 Model Hyperparameters

Here we review the hyperparameters (HPs) used for each of our models, indicating which HPs

were fixed and which were tuned. All neural networks with GMM output layers use 20 mixture

components.

Full NS. The Full NS model has 3 submodules: a location model, a stroke model, and a

termination model. Each submodule uses a distinct CNN, and each receives an image canvas of

size (28,28). The location and termination models–which return outputs for a single time step–each

use a feed-forward CNN architecture inspired by Vinyals et al. (2016). The CNNs consist of a stack

of 4 blocks, with each block i including a 3x3 convolution with Ki filters, batch normalization,

25

nonlinear activation f , 2x2 max-pooling, and dropout with rate p. These blocks are followed by a

single fully-connected layer with D units, activation f and dropout p. Hyperparameters {Ki}, f ,

p and D were selected from tuning. The stroke model uses a modified CNN architecture without

spatial pooling, designed to convey high-resolution spatial information for visual attention. The

CNN returns a feature map of size (64, 14, 14), which is then passed to an LSTM. The LSTM

predicts the spline trajectory of the next stroke one offset at a time, attending to different parts of

the feature map at each step. The HPs of the CNN were fixed, but the HPs of the LSTM were tuned,

including the number of LSTM layers and number of units per layer.

Hierarchical LSTM. The Hierarchical LSTM model has a character-level LSTM backbone and

3 submodules: a stroke encoder (BiLSTM), a location model (MLP), and a stroke model (LSTM).

The number of LSTM layers, number of units per layer and dropout rate in the character-level

LSTM were selected from tuning, but HPs of all submodules were fixed. The stroke encoder is a

bidirectional LSTM with a single layer of 256 units. It outputs a fixed-length vector representation

of the previous stroke, which is fed to the character LSTM as input. The location model is a 2-layer

MLP that receives the current hidden state of the character LSTM and outputs a GMM for the next

stroke’s starting location. The stroke model is an LSTM with a single layer of 256 units and outputs

a GMM at each time step for the next spline offset.

Baseline LSTM. The Baseline LSTM is a single module. It has L LSTM layers, each with K

units and dropout rate p. The values of L, K and p were selected from tuning.

2.8 Experiments

We evaluated the creative generalizations of our 3 models using both quantitative and qualitative

analyses. Each of our models estimates a probability density function for characters from training

examples. This density function can be used to compute likelihoods for held-out characters

and to generate new character samples. A generative model for characters that exhibits creative

26

generalization should produce high likelihood scores for novel character concepts from held-out

classes. In addition, the model should generate new characters that are sufficiently dissimilar from

the training examples, but that are structurally consistent with ground truth. In our quantitative

analysis, we tested our models for their likelihood performance on novel character classes using a

rigorous set of experiments with different train/test splits. In our qualitative analysis, we inspected

the character samples, comparing with BPL, ground truth concepts, and nearest neighbors from the

training set.

Alphabet Splits Character Splits Holdout
Model split1 split2 split3 split1 split2 split3 -
Full NS 13.77 14.18 17.53 12.35 12.59 12.57 19.51
H-LSTM 14.37 14.56 17.71 12.24 12.80 12.51 20.16
Baseline 14.32 14.42 17.71 12.20 12.77 12.39 19.66

Table 2.1: Test losses from our 3 models. Losses indicate the average negative log-likelihood per
test character (lower is better). In our “alphabet splits” task, we divide the background set into
train/test splits such that the model must generalize to new characters from novel alphabets. In our
“character splits” task, we divide the background set such that the model must generalize to new
characters from familiar alphabets. In our “holdout” task, we provide the entire background set for
training and use the held-out evaluation set–which contains new characters from novel alphabets–for
testing.

Full NS Model Hierarchical LSTM Baseline LSTM BPL (unconditional) Ground Truth

Figure 2.5: Character sample comparison. Characters generated by our Full NS, H-LSTM and
Baseline LSTM models are shown side-by-side, along with samples from the BPL forward model2

as well as ground truth characters from Omniglot.

27

2.8.1 Evaluation on held-out concepts

Methods

In our quantitative analysis, we evaluated our models for two different forms of likelihood gen-

eralization, corresponding to different train/test splits. In the first generalization task, denoted

“character splits," we asked whether our models could generalize to new character classes from

familiar alphabets. We created 3 train/test splits from the Omniglot background set, sampling 80%

of characters per alphabet for train and 20% for test. In our second task, denoted “alphabet splits,"

we asked whether our models could generalize to new character classes from novel alphabets. We

again sampled 3 train/test splits of size 80-20, this time splitting by alphabet. In both the “character

splits" and “alphabet splits" tasks, we explored multiple hyperparameter configurations for our

models, varying parameters such as the number of hidden layers, number of units per layer, and

dropout probability (Section 2.7). Average validation loss across splits was used to select the best

configuration for each model in each task. We then took our best configurations in each task and

reported their validation losses on all 3 splits.

As a final quantitative analysis, we tested our models on one additional task that extends the

“alphabet splits" task. Our motivation was to provide a more rigorous analysis using a completely

withheld test set as per standard practice in machine learning evaluations. We re-trained our best

configurations of each model on the entire background set, using the hyperparameters selected from

our “alphabet splits" task. We then reported losses on the evaluation set, which contains character

drawings from 10 completely novel alphabets.

Results

Results from the cross-validation splits are shown in Table 2.1, “Alphabet Splits" and “Charac-

ter Splits." In our alphabet splits, the Full NS model consistently outperformed the alternatives,

exhibiting the best generalization performance in each of the 3 splits. Thus, our neuro-symbolic

28

architecture appears best equipped to capture overarching principles in handwriting concepts that

generalize far outside of the training examples.

In our character splits task, the Baseline LSTM exhibited best performance in 2 out of 3 splits,

and the Full NS model in 1 of 3. The character splits present a much easier generalization task,

where exemplar-based learning could offer a suitable alternative to learning general structural

principles. Interestingly, the selected hyperparameter configuration for our Full NS model remained

constant across the “alphabet" and “character" split tasks, whereas the configuration changed for

both the Baseline and H-LSTM models.

Results for each model on the held-out set of characters are shown in Table 2.1, “Holdout."

Similarly to the “alphabets" task, our Full NS model outperforms both alternative models on the

holdout set, providing further support that this architecture learns the best general model of these

simple visual concepts. A paired t-test reveals the Full NS model has reliably better loss per example

than the next-best model (Baseline; t(5531) = 3.094; p < 0.002).

Full NS Model Hierarchical LSTM Baseline LSTM

Figure 2.6: Novelty of character samples. Character drawings sampled from each model were
compared to their 5 nearest neighbors from the training set. Each row corresponds to one character
sample from the model. The red box indicates the model sample, and the 5 nearest neighbors are
shown in the succeeding columns.

29

2.8.2 Generating new concepts

Methods

In our qualitative analysis, we analyzed the 3 neural network models on their ability to produce

novel visual concepts. We took our trained models from the previous experiment and sampled 36

characters from each model, following the model’s causal generative procedure. In addition, we

sampled 36 characters from the BPL character prior, and we selected 36 “ground truth" characters

from Omniglot at random. Samples were then compared visually side-by-side.

As an additional qualitative analysis, we compared character samples from each model for

their similarity to the training examples. Although the complexity and structural coherence of

generated characters are important criteria, these observations alone provide insufficient evidence

for a human-like generative process; a model that memorizes the training examples might produce

samples with structural coherence and rich variations, but such a model does not account for the

flexible ways that humans generate new concepts. In our second analysis, we took the character

samples from our models and found the 5 most-similar training characters for each, using cosine

distance in the last hidden layer of a CNN classifier as a metric space for perceptual similarity. The

CNN was trained to classify characters from the Omniglot background set, a 964-way classification

task.

Results

Fig. 2.5 shows samples from each of our three models, as well as from the BPL forward model1

and from the Omniglot data (ground truth). Compared to BPL, the neural-enhanced models capture

more correlational structure and character complexity. For instance, the Full NS model propagates

stylistic and structural consistency across three strokes to form a Braille-like character, as shown by

1BPL character samples have been centered for better visual appearance; the actual samples often protrude outside
of the image window. A more complex non-parametric BPL model was used in the visual Turing tests in Lake et al.
(2015) that has explicit re-use of character parts. Those samples were also centered.

30

the sample in column 1, row 2. Fig. 2.6 shows a handful of character samples produced by each

neural model plotted alongside their five nearest neighbors from the Omniglot training set. Unlike

the log-likelihood results, comparing models in this fashion is subjective; nevertheless the H-LSTM

and Baseline LSTM produce more characters that closely mimic the nearest training examples (7/9

by our eyes). In contrast, our Full NS model produces only a few (3/9) characters that are close

mirrors of training examples, suggesting that it can generalize further from the training observations.

samples from Full NS
model (T=0.5)

corresponding
Omniglot neighbors

stroke key:

Figure 2.7: Topologically-organized character samples and their nearest Omniglot neighbors. We
drew 100 character samples from our Full NS model and organized them into a 10x10 grid such that
neighboring characters have similar drawing styles (left). We then found the “nearest neighbor" of
each sample from the Omniglot character dataset and organized the neighbors into a corresponding
10x10 grid (right).

To get an idea of the different character styles produced by our Full NS model, we sampled 100

characters from the model and organized them into a 10x10 grid such that neighboring characters

have high perceptual similarity (Fig. 2.7, left). Characters were sampled at a lower level of

stochasticity, using the temperature parameter proposed by Ha & Eck (2018) to modify the entropy

of the mixture density outputs (we used T = 0.5). The model produces characters in multiple

distinct styles, with some having more angular, line-based structure and others relying on complex

curves. In Fig. 2.7 (right), we plotted the most-similar Omniglot character for each sample in a

corresponding grid. In many cases, samples from the model have a distinct style and are visually

dissimilar from their nearest Omniglot neighbor.

31

Fig. 2.8 shows a larger collection of characters from our Full NS model, using color coding to

convey the stroke composition of each sample. We produced character samples at two different

levels of stochasticity, again using temperature to modify the entropy of the mixture density outputs.

Samples are shown for temperature settings T = 1.0 and T = 0.5.

 (default)T = 1.0 (less random)T = 0.5

stroke key:

Figure 2.8: Samples with stroke decomposition. Character samples produced by our Full NS model
are shown with stroke decompositions. Samples were produced at two temperature settings (Ha &
Eck, 2018, Eq.8), using T = 1.0 and T = 0.5.

2.9 Discussion

We presented a new neuro-symbolic generative model of simple visual concepts. Our model

successfully captures compositional and causal structure in handwritten character concepts, forming

a representation that generalizes to new concepts. We tested our model by comparing its likelihood

scores on a holdout set of novel characters, finding that it consistently outperforms two generic

neural network alternatives when the test characters deviate significantly from the training examples.

Furthermore, our generative model produces new character concepts with richer variations than

simple parametric models, yet that remain structurally coherent and visually consistent with human

productions.

Neuro-symbolic models offer a promising set of tools to express the rich background knowledge

32

that enables creative generation. These models can explain the nonparametric correlation structure

embodied in conceptual knowledge while maintaining important inductive biases to account for

the structured ways that people generate new concepts. We believe that models of this kind will be

useful to explain a variety of human imaginative behaviors, such as when a chef creates the new

recipe “pea guacamole." In future work, we’d like to explore applications of neuro-symbolic models

to other types of concepts with varying complexity.

33

Chapter 3

Few-shot learning of handwritten character

concepts

3.1 Preface

This chapter is based off of Feinman & Lake (2021). It explores a hierarchical generative model

designed to tackle the Omniglot challenge (Lake et al., 2015) of task-general representation learning.

The Omniglot challenge was released in 2015 as a challenge for machines to perform 5 concept

learning tasks that people perform with ease. At the time we published this work, the challenge had

become a popular benchmark and an active area of research in the machine learning community.

Despite nearly 4 years of active research, neural network models had not yet explained how people

successfully grasp new concepts and use them in a variety of ways. In their "3-year progress

report," Lake et al. (2019) detailed the shortcomings of various machine learning models that had

attempted the challenge. Although there had been considerable progress in one-shot classification,

the majority of works had focused on this single task alone, and there had been little emphasis

placed on developing task-general models. Our paper set out to address unanswered questions about

34

task-general representation learning, aiming to develop the first neurally-grounded model that could

perform a variety of distinct Omniglot tasks.

This chapter builds on the work of Chapter 2, and aspects of the model were already introduced

therein. The previous work presents only a prior distribution that alone performs just one task

(generating new concepts); our new developments in this chapter include a full hierarchical model,

a differentiable image renderer / likelihood, and a procedure for approximate probabilistic inference

from image data. These ingredients together enable GNS to perform 4 unique conceptual tasks.

3.2 Introduction

Human conceptual knowledge supports many capabilities spanning perception, production and

reasoning (Murphy, 2002). A signature of this knowledge is its productivity and generality: the

internal models and representations that people develop can be applied flexibly to new tasks with

little or no training experience (Lake et al., 2017). Another distinctive characteristic of human

conceptual knowledge is the way that it interacts with raw signals: people learn new concepts

directly from raw, high-dimensional sensory data, and they identify instances of known concepts

embedded in similarly complex stimuli. A central challenge is developing machines with these

human-like conceptual capabilities.

Engineering efforts have embraced two distinct paradigms: symbolic models for capturing struc-

tured knowledge, and neural network models for capturing nonparametric statistical relationships.

Symbolic models are well-suited for representing the causal and compositional processes behind

perceptual observations, providing explanations akin to people’s intuitive theories (Murphy &

Medin, 1985). Quintessential examples include accounts of concept learning as program induction

(Goodman et al., 2008; Stuhlmuller et al., 2010; Lake et al., 2015; Goodman et al., 2015; Ellis et

al., 2018; Lake & Piantadosi, 2020). Symbolic programs provide a language for expressing causal

and compositional structure, while probabilistic modeling offers a means of learning programs and

35

expressing additional conceptual knowledge through priors. The Bayesian Program Learning (BPL)

framework (Lake et al., 2015), for example, provides a dictionary of simple sub-part primitives for

generating handwritten character concepts, and symbolic relations that specify how to combine

sub-parts into parts (strokes) and parts into whole character concepts. These abstractions support

inductive reasoning and flexible generalization to a range of different tasks, utilizing a single

conceptual representation (Lake et al., 2015).

Symbolic models offer many useful features, but they come with important limitations. Foremost,

symbolic probabilistic models make simplifying and rigid parametric assumptions, and when the

assumptions are wrong—as is common in complex, high-dimensional data—they create bias (Geman

et al., 1992). The BPL character model, for example, assumes that parts are largely independent

a priori, an assumption that is not reflective of real human-drawn characters. As a consequence,

characters generated from the raw BPL prior lack the complexity of real characters (Fig 3.1, left),

even though the posterior samples can appear much more structured. Another limitation of symbolic

probabilistic models is that the construction of structured hypothesis spaces requires significant

domain knowledge (Botvinick et al., 2017). Humans, meanwhile, build rich internal models directly

from raw data, forming hypotheses about the conceptual features and the generative syntax of a

domain. As one potential resolution, previous work has demonstrated that the selection of structured

hypotheses can itself be attributed to learning in a Bayesian framework (Tenenbaum et al., 2011;

Goodman et al., 2008, 2011; Piantadosi et al., 2016; Kemp & Tenenbaum, 2009; Perfors et al.,

2011). Although more flexible than a priori structural decisions, models of this kind still make

many assumptions, and they have not yet tackled the types of raw, high-dimensional stimuli that are

distinctive of the neural network approach.

The second paradigm, neural network modeling, prioritizes powerful nonparametric statistical

learning over structured representations. This modeling tradition emphasizes emergence, the

idea that conceptual knowledge arises from interactions of distributed sub-symbolic processes

(McClelland et al., 2010; LeCun et al., 2015). Neural networks are adept at learning from raw

36

HumansBPL model

(centered)

GNS model

Figure 3.1: Character drawings produced by the BPL model (left), GNS model (middle), and
humans (right).

data and capturing complex patterns. However, they can struggle to learn the compositional and

causal structure in how concepts are formed (Lake et al., 2017); even when this structure is salient

in the data, they may have no obvious means of incorporating it. These limitations have been

linked to shortcomings in systematic generalization (Marcus, 2003; Lake & Baroni, 2018) and

creative abilities (Lake et al., 2019). An illustrative example is the Omniglot challenge: in 4 years of

active research, neural network models do not yet explain how people quickly grasp new concepts

and use them in a variety of ways, even with relatively simple handwritten characters (Lake et

al., 2019). Surveying over 10 neural models applied to Omniglot, Lake et al. (2019) found that

only two attempted both classification and generation tasks, and they were each outperformed

by the fully-symbolic, probabilistic BPL. Moreover, neural generative models tended to produce

characters with anomalous characteristics, highlighting their shortcomings in modeling causal and

compositional structure (see Fig. 3.2 and Lake et al. (2019, Fig. 2a)).

In this paper, we introduce a new approach that leverages the strengths of both the symbolic and

neural network paradigms by representing concepts as probabilistic programs with neural network

subroutines. We describe an instance of this approach developed for the Omniglot challenge (Lake

et al., 2015) of task-general representation learning and discuss how we see our Omniglot model

fitting into a broader class of Generative Neuro-Symbolic (GNS) models that seek to capture

37

the data-generation process. As with traditional probabilistic programs, the control flow of a

GNS program is an explicit representation of the causal generative process that produces new

concepts and new exemplars. Moreover, explicit re-use of parts through repeated calls to procedures

such as GeneratePart (Fig. 3.3) ensures a representation that is compositional, providing an

appropriate inductive bias for compositional generalization. Unlike fully-symbolic probabilistic

programs, however, the distribution of parts and correlations between parts in GNS are modeled

with neural networks. This architectural choice allows the model to learn directly from raw data,

capturing nonparametric statistics while requiring only minimal prior knowledge.

We develop a GNS model for the Omniglot challenge of learning flexible, task-general represen-

tations of handwritten characters. We report results on 4 Omniglot challenge tasks with a single

model: 1) one-shot classification, 2) parsing/segmentation, 3) generating new exemplars, and 4)

generating new concepts (without constraints); the 5th and final task of generating new concepts

(from type) is left for future work. We also provide log-likelihood evaluations of the generative

model. Notably, our goal is not to chase state-of-the-art performance on one task across many

datasets (e.g., classification). Instead we build a model that learns deep, task-general knowledge

within a single domain and evaluate it on a range of different tasks. This “deep expertise” is arguably

just as important as “broad expertise” in characterizing human-level concept learning (Murphy,

2002; Lake et al., 2019); machines that seek human-like abilities will need both. Our work here is

one proposal for how neurally-grounded approaches can move beyond pattern recognition toward

the more flexible model-building abilities needed for deep expertise (Lake et al., 2017). Subsequent

chapters demonstrate how to extend GNS to another conceptual domain: Chapter 4 provides a

complete case study with structured visual concepts, and Section 7.3 presents a proposal for a GNS

model of 3D object concepts.

38

Task BPL RCN VHE SG SPIRAL
Matching

Net MAML
Graph

Net
Prototypical

Net ARC

One-shot classification x x x x x x x x
Parsing x x
Generate exemplars x x x x
Generate concepts (type) x x x
Generate concepts x x x

Table 3.1: Attempted Omniglot tasks by model. Attempt does not imply successful completion.
Models shown: BPL (Lake et al., 2015), RCN (George et al., 2017), VHE (Hewitt et al., 2018), SG
(Rezende et al., 2016), SPIRAL (Ganin et al., 2018), Matching Net (Vinyals et al., 2016), MAML
(Finn et al., 2017), Graph Net (Garcia & Bruna, 2018), Prototypical Net (Snell et al., 2017), and
ARC (Shyam et al., 2017).

3.3 Related Work

The Omniglot dataset and challenge has been widely adopted in machine learning, with models such

as Matching Nets (Vinyals et al., 2016), MAML (Finn et al., 2017), and ARC (Shyam et al., 2017)

applied to just one-shot classification, and others such as DRAW (Gregor et al., 2015), SPIRAL

(Ganin et al., 2018), and VHE (Hewitt et al., 2018) applied to one or more generative tasks. In their

“3-year progress report," Lake et al. (2019) reviewed the current progress on Omniglot, finding that

although there was considerable progress in one-shot classification, there had been little emphasis

placed on developing task-general models to match the flexibility of human learners (Table 3.1).

Moreover, neurally-grounded models that attempt more creative generation tasks were shown to

produce characters that either closely mimicked the training examples or that exhibited anomalous

variations, making for easy identification from humans (see Fig. 3.2 and Lake et al. (2019, Fig.

2a)). Our goal is distinct in that we aim to learn a single neuro-symbolic generative model that can

perform a variety of unique tasks, and that generates novel yet structured new characters.

Neuro-symbolic modeling has become an active area of research, with applications to learning

input-output programs (Reed & de Freitas, 2016; Graves et al., 2014; Devlin et al., 2017; Nye et

al., 2020; Valkov et al., 2018), question answering (Yi et al., 2018; Mao et al., 2019) and image

description (Kulkarni & et al., 2015; Ellis et al., 2018). GNS modeling distinguishes itself from

39

One-shot Generalization in Deep Generative Models

Figure 8. Unconditional samples for 52 × 52 omniglot (task 1).
For a video of the generation process, see https://www.youtube.com/

watch?v=HQEI2xfTgm4

Figure 9. Generating new examplars of a given character for the
weak generalization test (task 2a). The first row shows the test
images and the next 10 are one-shot samples from the model.

3. Representative samples from a novel alphabet.
This task corresponds to figure 7 in Lake et al. (2015), and
conditions the model on anywhere between 1 to 10 samples
of a novel alphabet and asks the model to generate new
characters consistent with this novel alphabet. We show
here the hardest form of this test, using only 1 context im-
age. This test is highly subjective, but the model genera-
tions in figure 11 show that it is able to pick up common
features and use them in the generations.

We have emphasized the usefulness of deep generative
models as scalable, general-purpose tools for probabilistic
reasoning that have the important property of one-shot gen-
eralization. But, these models do have limitations. We have
already pointed to the need for reasonable amounts of data.
Another important consideration is that, while our models
can perform one-shot generalization, they do not perform
one-shot learning. One-shot learning requires that a model
is updated after the presentation of each new input, e.g.,
like the non-parametric models used by Lake et al. (2015)
or Salakhutdinov et al. (2013). Parametric models such as
ours require a gradient update of the parameters, which we
do not do. Instead, our model performs a type of one-shot
inference that during test time can perform inferential tasks
on new data points, such as missing data completion, new
exemplar generation, or analogical sampling, but does not
learn from these points. This distinction between one-shot
learning and inference is important and affects how such
models can be used. We aim to extend our approach to the
online and one-shot learning setting in future.

30-20 40-10 45-5

Figure 10. Generating new examplars of a given character for the
strong generalization test (task 2b,c), with models trained with
different amounts of data. Left: Samples from model trained on
30-20 train-test split; Middle: 40-10 split; Right: 45-5 split (right)

Figure 11. Generating new exemplars from a novel alphabet (task
3). The first row shows the test images, and the next 10 rows are
one-shot samples generated by the model.

6. Conclusion
We have developed a new class of general-purpose mod-
els that have the ability to perform one-shot generalization,
emulating an important characteristic of human cognition.
Sequential generative models are natural extensions of vari-
ational auto-encoders and provide state-of-the-art models
for deep density estimation and image generation. The
models specify a sequential process over groups of latent
variables that allows it to compute the probability of data
points over a number of steps, using the principles of feed-
back and attention. The use of spatial attention mechanisms
substantially improves the ability of the model to general-
ize. The spatial transformer is a highly flexible attention
mechanism for both reading and writing, and is now our
default mechanism for attention in generative models. We
highlighted the one-shot generalization ability of the model
over a range of tasks that showed that the model is able to
generate compelling and diverse samples, having seen new
examples just once. However there are limitations of this
approach, e.g., still needing a reasonable amount of data to
avoid overfitting, which we hope to address in future work.

(a) SG

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

(b) VHE

Figure 3.2: New exemplars produced by the Sequential Generative (SG) model (Rezende et al.,
2016) and the Variational Homoencoder (VHE) (Hewitt et al., 2018). (a) The SG model shows far
too much variability, drawing what is clearly the wrong character in many cases (e.g. right-most
column). (b) The VHE character samples are often incomplete, missing important strokes of the
target class.

prior work through its focus on hybrid generative modeling, combining both structured program

execution and neural networks directly in the probabilistic generative process. Neuro-symbolic

VQA models (Yi et al., 2018; Mao et al., 2019) are neither generative nor task-general; they are

trained discriminatively to answer questions. Other neuro-symbolic systems use neural networks

to help perform inference in a fully-symbolic generative model (Kulkarni & et al., 2015; Ellis et

al., 2018), or to parameterize a prior over fully-symbolic hypotheses (Hewitt et al., 2020). In order

to capture the dual structural and statistical characteristics of human conceptual representations,

we find it important to include neural nets directly in the forward generative model. As applied to

Omniglot, our model bears some resemblance to SPIRAL (Ganin et al., 2018); however, SPIRAL

does not provide a density function, and it has no hierarchical structure, limiting its applications to

image reconstruction and unconditional generation.

Another class of models on the neuro-symbolic spectrum aims to learn “object representations"

40

with neural networks (Eslami et al., 2016; Greff et al., 2019; Kosiorek et al., 2019), which add mini-

mal object-like symbols to support systematic reasoning and generalization. Although these models

have demonstrated promising results in applications such as scene segmentation and unconditional

generation, they have not yet demonstrated the type of rich inductive capabilities that we are after:

namely, the ability to learn “deep" conceptual representations from just one or a few examples that

support a variety of discriminative and generative tasks.

Other works have used autoregressive models like ours with similar stroke primitives to model

the causal generative processes of handwriting (Graves, 2013; Ha & Eck, 2018). We develop a

novel architecture for generating handwriting, which represents explicit compositional structure by

modeling parts and relations with separate modules and applying intermediate symbolic rendering.

Most importantly, these prior models have not made a connection to the image; therefore while

they can generate handwriting as symbolic coordinates, they cannot explain how people use their

causal knowledge to learn new characters from visual presentations, how they infer the strokes

of a character seen on paper, or how they generate a new example of an observed character. By

combining a powerful autoregressive model of handwriting with a symbolic image renderer and

algorithms for probabilistic inference, we seek to replicate a spectrum of unique human concept

learning abilities.

3.4 Generative Model

Our GNS model leverages the type-token hierarchy of BPL (Lake et al., 2015), which offers a

useful scaffolding for conceptual models (Fig. 3.3, left). The type-level model P (ψ) defines a

prior distribution over character concepts, capturing overarching principles and regularities that tie

together characters from different alphabets and providing a procedure to generate new character

concepts unconditionally in latent stroke format (Fig. 3.3, right). A token-level model p(θ|ψ)

captures the within-class variability that arises from motor noise and drawing styles, and an image

41

type level

token level

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

C
Canvas

yi, xi

Part

Image
I

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

pr
oc

ed
ur

e
G

ENERAT
ET

YPE

C

0

.
In

itia
liz

e
bla

nk
im

ag
e

ca
nv

as

whi
le

tr
ue

do

[y
i
, x

i
]

G
ENERAT

EP
ART(

C
)
.

Sam
ple

pa
rt

loc
at

ion
&

pa
ra

m
et

er
s

C

f re
nd

er
(y

i
, x

i
, C

)

.
Ren

de
r p

ar
t t

o
im

ag
e

ca
nv

as

v i
⇠

p(
v
| C

)

.
Sam

ple
te

rm
ina

tio
n

ind
ica

to
r

if
v i

th
en

br
ea

k

.
Te

rm
ina

te
sa

m
ple

{
, y

1:

, x

1:

}

re
tu

rn

.
Ret

ur
n

co
nc

ep
t t

yp
e

1

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

location model p(y ∣ C)

CNN MLP

stroke model p(x ∣ y, C)

CNN LSTM

y

C

attention

p(y)

p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)
…C

Figure 3.3: A generative neuro-symbolic (GNS) model of character concepts. The type model
GenerateType (P (ψ)) produces character types one stroke at a time, using an image canvas C
as memory. At each step, the current canvas C is fed to procedure GeneratePart and a stroke
sample is produced. The canvas is first processed by the location model, a CNN-MLP architecture
that samples starting location y, and next by the stroke model, a CNN-LSTM architecture that
samples trajectory x while attending to the encoded canvas. Finally, a symbolic renderer updates
the canvas according to x and y, and a termination model decides whether to terminate the type
sample. Unique exemplars are produced from a character type by sampling from the token model
conditioned on ψ, adding motor noise to the drawing parameters and performing a random affine
transformation.

distribution P (I|θ) provides an explicit model of how causal stroke actions translate to image pixels.

All parameters of our model are learned from the Omniglot background set of drawings (Appendix

A). The full joint distribution over type ψ, token θ(m) and image I(m) factors as

P (ψ, θ(m), I(m)) = P (ψ)P (θ(m)|ψ)P (I(m)|θ(m)). (3.1)

Although sharing a common hierarchy, the implementation details of each level in our GNS

model differ from BPL in critical ways. The GNS type prior P (ψ) is a highly expressive generative

model that uses an external image canvas, coupled with a symbolic rendering engine and an attentive

recurrent neural network, to condition future parts on the previous parts and model sophisticated

42

causal and correlational structure. This structure is essential to generating new character concepts

in realistic, human-like ways (Sec. 3.6). Moreover, whereas the BPL model is provided symbolic

relations for strokes such as “attach start" and “attach along," GNS learns implicit relational structure

from the data, identifying salient patterns in the co-occurrences of parts and locations. Importantly,

the GNS generative model is designed to be differentiable at all levels, yielding log-likelihood

gradients that enable powerful new inference algorithms and estimates of marginal image likelihood

(Sec. 3.5).

3.4.1 Type prior

The type prior P (ψ) is captured by a neuro-symbolic generative model of character drawings.

The model represents a character as a sequence of strokes (parts), with each stroke i decomposed

into a starting location yi ∈ R2 and a variable-length trajectory xi ∈ Rdi×2. Rather than use raw

pen trajectories as our stroke format, we use a minimal spline representation of strokes, obtained

from raw trajectories by fitting cubic b-splines with a residual threshold. The starting location

yi therefore conveys the first spline control point, and trajectory xi = {∆i1, ...,∆idi} conveys the

offsets between subsequent points of a (di+1)-length spline. These offsets are transformed into a

sequence of relative points xi = {xi1, ..., xidi+1}, with xi1 = 0, specifying locations relative to yi.

The model samples a type one stroke at a time, using an image canvas C as memory to convey

the sample state. At each step, a starting location for the next stroke is first sampled from the

location model, followed by a trajectory from the stroke model. The stroke is then rendered to the

canvas C, and a termination model decides whether to terminate or continue the sample. Each of

the three model components is expressed by a neural network, using a LSTM as the stroke model

to generate trajectories as in Graves (2013). The details of these neural modules are provided in

Appendix A. The type model P (ψ) specifies an auto-regressive density function that can evaluate

exact likelihoods of character drawings, and its hyperparameters (the three neural networks) are

learned from the Omniglot background set of 30 alphabets using a maximum likelihood objective.

43

A full character type ψ includes the random variables ψ = {κ, y1:κ, x1:κ}, where κ ∈ Z+ is the

number of strokes. The density function P (ψ) is also fully differentiable w.r.t. the continuous

random variables in ψ.

3.4.2 Token model

A character token θ(m) = {y(m)
1:κ , x

(m)
1:κ , A

(m)} represents a unique instance of a character concept,

where y(m)
1:κ are the token-level locations, x(m)

1:κ the token-level parts, and A(m) ∈ R4 the parameters

of an affine warp transformation. The token distribution factorizes as

P (θ(m)|ψ) = P (A(m))
κ∏

i=1

P (y
(m)
i | yi)P (x(m)

i | xi). (3.2)

Here, P (y(m)
i | yi) represents a simple noise distribution for the location of each stroke, and

P (x
(m)
i | xi) for the stroke trajectory. The first two dimensions of affine warp A(m) control a global

re-scaling of the token drawing, and the second two a global translation of its center of mass. The

distributions and pseudocode of our token model are given in Appendix A.4.

3.4.3 Image model

The image model P (I(m) | θ(m)) is based on Lake et al. (2015) and is composed of two pieces. First,

a differentiable symbolic engine f receives the token θ(m) and produces an image pixel probability

map pimg = f(θ(m), σ, ϵ) by evaluating each spline and rendering the stroke trajectories. Here,

σ ∈ R+ is a parameter controlling the rendering blur around stroke coordinates, and ϵ ∈ (0, 1)

controlling pixel noise, each sampled uniformly at random. The result then parameterizes an image

distribution P (I(m) | θ(m)) = Bernoulli(pimg), which is differentiable w.r.t. θ(m), σ, and ϵ.

44

3.5 Probabilistic Inference

Given an image I of a novel concept, our GNS model aims to infer the latent causal, compositional

process for generating new exemplars. We follow the high-level strategy of BPL for constructing a

discrete approximation Q(ψ, θ | I) to the desired posterior distribution (Lake et al., 2015),

P (ψ, θ | I) ≈ Q(ψ, θ | I) =
K∑
k=1

πkδ(θ − θk)δ(ψ − ψk). (3.3)

A heuristic search algorithm is used to find K good parses, {ψ, θ}1:K , that explain the underlying

image with high probability. These parses are weighted by their relative posterior probability,

πk ∝ π̃k = P (ψk, θk, I) such that
∑

k πk = 1. To find the K good parses, search uses fast bottom-

up methods to propose many variants of the discrete variables, filtering the most promising options,

before optimizing the continuous variables with gradient descent (we use K = 5). The algorithm

proceeds by the following steps:

input

Figure 3.4: The initial “base" parses proposed for an image with skeleton extraction and random
walks.

1. Propose a range of candidate parses with fast bottom-up methods. The bottom-up algorithm

extracts an undirected skeleton graph from the character image and uses random walks on

45

the graph to propose a range of candidate parses. There are typically about 10-100 proposal

parses, depending on character complexity (Fig. 3.4).

2. Select stroke order and stroke directions for each parse using exhaustive search with the type

prior P (ψ). Random search is used for complex parses with large configuration spaces.

3. Score each of the proposal parses using type prior P (ψ) and select the top-K parses. We use

K = 5 following previous work (Lake et al., 2015).

4. Separate each parse into type and token {ψ, θ} and optimize the continuous type- and token-

level parameters with gradient descent to maximize the full joint density P (ψ, θ, I) of Eq.

3.1.

5. Compute weights π1:K for each parse by computing π̃k = P (ψk, θk, I) and normalizing

πk = π̃k/
∑K

k=1 π̃k.

3.5.1 Inference for one-shot classification

In one-shot classification, models are given a single training image I(c) from each of c = 1, ..., C

classes, and asked to classify test images according to their corresponding training classes. For each

test image I(T), we compute an approximation of the Bayesian score log P (I(T) | I(c)) for every

example I(c), using our posterior parses {ψ, θ(c)}1:K and corresponding weights π1:K from I(c) (Eq.

3.3). The approximation is formulated as

log P (I(T) | I(c)) ≈ log
∫
P (I(T)|θ(T))P (θ(T) | ψ)Q(ψ, θ(c), | I(c))∂ψ∂θ(c)∂θ(T)

≈ log
K∑
k=1

πk max
θ(T)

P (I(T) | θ(T))P (θ(T) | ψk), (3.4)

where the maximum over θ(T) is determined by refitting token-level parameters θ(c) to image I(T)

with gradient descent. Following Lake et al. (2015), we use a two-way version of the Bayesian

46

score that also considers parses of I(T) refit to I(c). The classification rule is therefore

c∗ = argmax
c

log P (I(T) | I(c))2 = argmax
c

log
[P (I(c) | I(T))

P (I(c))
P (I(T) | I(c))

]
, (3.5)

where P (I(c)) ≈∑
k π̃k is approximated from the unnormalized weights of I(c) parses.

3.5.2 Inference for generating new exemplars

When generating new exemplars, we are given a single image I(1) of a novel class and asked to

generate new instances I(2) (overloading the parenthesis notation from classification). To perform

this task with GNS, we first sample from our approximate posterior Q(ψ, θ | I(1)) to obtain parse

{ψ, θ} (see Eq. 3.3), and then re-sample token parameters θ from our token model P (θ(2) | ψ). Due

to high-dimensional images, mass in the approximate posterior often concentrates on the single best

parse. To model the diversity seen in different human parses, we apply a temperature parameter to

the log of unnormalized parse weights log(π̃′
k) = log(π̃k)/T before normalization, selecting T = 8

for our experiments. With updated weights π′
1:K our sampling distribution is written as

P (I(2), θ(2) | I(1)) ≈
K∑
k=1

π′
kP (I

(2) | θ(2))P (θ(2) | ψk). (3.6)

3.5.3 Inference for marginal image likelihoods

Let z = ψ ∪ θ be a stand-in for the joint set of type- and token-level random variables in our GNS

generative model. The latent z includes both continuous and discrete variables: the number of

strokes κ and the number of control points per stroke d1:κ are discrete, and all remaining variables

are continuous. Decomposing z into its discrete variables zD ∈ ΩD and continuous variables

47

zC ∈ ΩC , the marginal density for an image I is written as

P (I) =
∑

zD∈ΩD

∫
P (I, zD, zC)∂zC . (3.7)

For any subset Ω̃D ⊂ ΩD of the discrete domain, the following inequality holds:

P (I) ≥
∑

zD∈Ω̃D

∫
P (I, zD, zC)∂zC . (3.8)

Our approximate posterior (Eq. 3.3) gives us K parses that represent promising modes {zD, zC}1:K
of the joint density P (I, zD, zC) for an image I , and by setting Ω̃D = {zD}1:K to be the set of K

unique discrete configurations from our parses, we can compute the lower bound of Eq. 3.8 by

computing the integral
∫
P (I, zD, zC)∂zC at each of these zD.

At each zDk ∈ {zD}1:K , the log-density function f(zC) = log P (I, zDk, zC) has a gradient-free

maximum at zCk, the continuous configuration of the corresponding posterior parse. These maxima

were identified by our gradient-based continuous optimizer during parse selection (Section 3.5). If

we assume that these maxima are sharply peaked, then we can use Laplace’s method to estimate the

integral
∫
P (I, zDk, zC)∂zC at each zDk. Laplace’s method uses Taylor expansion to approximate

the integral of ef(x) for a twice-differentiable function f around a maximum x0 as

∫
ef(x)∂x ≈ ef(x0)

(2π)
d
2

| −Hf (x0)|
1
2

, (3.9)

where x ∈ Rd andHf (x0) is the Hessian matrix of f evaluated at x0. Our log-density function f(zC)

is fully differentiable w.r.t. continuous parameters zC , therefore we can computeH(zC) = ∂2f/∂z2C

with ease. Our approximate lower bound on P (I) is therefore written as the sum of Laplace

48

log P(I(T) ∣ I(c)) = − 401.3

Correct
match

train

test

log P(I(T) ∣ I(c)) = − 664.8

Incorrect
match

train

test

(a) Classification fits

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

Human drawings Human parses GNS parses BPL parses

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

(b) Parsing

Figure 3.5: Classification fits and parsing. (a) Posterior parses from two training images were refit
to the same test image. The first row of each grid shows the training image and its top-3 predicted
parses (best emboldened). The second row shows the test image and its re-fitted training parses.
Reconstructed test images are shown in the final row. The correct training image reports a high
forward score, indicating that I(T) is well-explained by the motor programs for this I(c). (b) 27
character images from 3 classes are shown alongside their ground truth human parses, predicted
parses from the GNS model, and predicted parses from the BPL model.

approximations at our K parses:

P (I) ≥
K∑
k=1

∫
P (I, zDk, zC)∂zC ≈

K∑
k=1

P (I, zDk, zCk)
(2π)

d
2

| −H(zCk)|
1
2

(3.10)

3.6 Experiments

GNS was evaluated on four concept learning tasks from the Omniglot challenge (Lake et al., 2019):

one-shot classification, parsing, generating new exemplars, and generating new concepts. All

evaluations use novel characters from completely held-out alphabets in the Omniglot evaluation

set. As mentioned earlier, our goal is to provide a single model that captures deep knowledge of a

49

domain and performs strongly in a wide range of tasks, rather than besting all models on every task.

Our experiments include a mixture of quantitative and qualitative evaluations, depending on the

nature of the task. We have released an open-source code implementation of our experiments at the

following url: https://github.com/rfeinman/GNS-Modeling.

3.6.1 One-shot classification

GNS was compared with alternative models on the one-shot classification task from Lake et al.

(2015). The task involves a series of 20-way within-alphabet classification episodes, with each

episode proceeding as follows. First, the machine is given one training example from each of 20

novel characters. Next, the machine must classify 20 novel test images, each corresponding to one

of the training classes. With 20 episodes total, the task yields 400 trials. Importantly, all character

classes in an episode come from the same alphabet as originally proposed in Lake et al. (2015),

requiring finer discriminations than commonly used between-alphabet tests (Lake et al., 2019).

Model Error

GNS 5.7%
BPL (Lake et al., 2015) 3.3%
RCN (George et al., 2017) 7.3%
VHE (Hewitt et al., 2018) 18.7%
Proto. Net (Snell et al., 2017) 13.7%
ARC (Shyam et al., 2017) 1.5%∗

Table 3.2: Test error on within-alphabet one-shot classification. The ARC model used 4x training
classes.

As illustrated in Fig. 3.5(a), GNS classifies a test image by choosing the training class with

the highest Bayesian score (Eq. 3.5). A summary of the results is shown in Table 3.2. GNS was

compared with other machine learning models that have been evaluated on the within-alphabets

classification task (Lake et al., 2019). GNS achieved an overall test error rate of 5.7% across all 20

episodes (N=400). This result is very close to the original BPL model, which achieved 3.3% error

50

https://github.com/rfeinman/GNS-Modeling

with significantly more hand-design. The symbolic relations in BPL’s token model provide rigid

constraints that are key to its strong classification performance (Lake et al., 2015). GNS achieves

strong classification performance while emphasizing the nonparametric statistical knowledge needed

for creative generation in subsequent tasks. Beyond BPL, our GNS model outperformed all other

models that received the same background training. The ARC model (Shyam et al., 2017) achieved

an impressive 1.5% error, although it was trained with four-fold class augmentation and many

other augmentations, and it can only perform this one task. In Fig. A.5, we show a larger set of

classification fits from GNS, including examples of misclassified trials.

(a) Target images (b) GNS parses

Figure 3.6: Parsing. GNS predicted parses for 100 character images selected at random from the
Omniglot evaluation set. (a) A 10x10 grid of target images. (b) A corresponding grid of GNS
predicted parses per target image.

3.6.2 Parsing

In the Omniglot parsing task, machines must segment a novel character into an ordered set of strokes.

These predicted parses can be compared with human ground-truth parses for the same images. The

51

approximate posterior of GNS yields a series of promising parses for a new character image, and to

complete the parsing task, we identify the maximum a posteriori parse k∗ = maxk πk, reporting the

corresponding stroke configuration. Fig. 3.5(b) shows a visualization of the GNS predicted parses

for 27 different raw images drawn from 3 unique character classes, plotted alongside ground-truth

human parses (how the images were actually drawn) along with predicted parses from the BPL

model. Compared to BPL, GNS parses possess a few unique desirable qualities. The first character

class has an obvious segmentation to the human eye—evidenced by the consistency of human parses

in all examples—and the GNS model replicates this consistency across all 9 predicted parses. In

contrast, BPL predicts seemingly-unlikely parses for 2 of the examples shown. The second character

is more complex, and it was drawn in different styles by different human subjects. The GNS model,

which is trained on data from subjects with different styles, captures the uncertainty in this character

by predicting a variety of unique parses. BPL, on the other hand, produces a single, ubiquitous

segmentation across all 9 examples. In Fig. 3.6, we provide a larger set of parses from the GNS

model for a diverse range of Omniglot characters.

3.6.3 Generating new exemplars

Given just one training image of a novel character concept, GNS produces new exemplars of the

concept by sampling from the approximate conditional P (I(2), θ(2) | I(1)) of Eq. 3.6. In Fig.

3.7(a) we show new exemplars produced by GNS for a handful of target images, plotted next to

human productions (more examples in Fig. A.4). In the majority of cases, samples from the model

demonstrate that it has successfully captured the causal structure and invariance of the target class.

In contrast, deep generative models applied to the same task miss meaningful compositional and

causal structure, producing new examples that are easily discriminated from human productions

(Rezende et al., 2016; Hewitt et al., 2018) (see Fig. 3.2). In some cases, such as the third column

of Fig. 3.7(a), samples from GNS exhibit sloppy stroke junctions and connections. Compared to

BPL, which uses engineered symbolic relations to enforce rigid constraints at stroke junctions, GNS

52

Human

GNS

Target

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

on N
ovem

ber 21, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

on N
ovem

ber 21, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

on N
ovem

ber 21, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from
 for each subpart. Last, parts are roughly positioned

to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

on N
ovem

ber 21, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

BPL

(a) Generating new exemplars

GNS

BPL

(b) Generating new concepts

Figure 3.7: Generation tasks. (a) GNS produced 9 new exemplars for each of 5 target images,
plotted here next to human and BPL productions. (b) A grid of 36 new character concepts sampled
unconditionally from GNS, shown next to BPL samples.

misses some of these structural elements. Nevertheless, new examples from GNS appear strong

enough to pass for human in many cases, which we would like to test in future work with visual

Turing tests.

3.6.4 Generating new concepts (unconstrained)

In addition to generating new exemplars of a particular concept, GNS can generate new character

concepts altogether, unconditioned on training images. Whereas the BPL model uses a complicated

procedure for unconditional generation that involves a preliminary inference step and a supplemental

nonparametric model, GNS generates new concepts by sampling directly from the type prior P (ψ).

Moreover, the resulting GNS productions capture more of the structure found in real characters than

either the raw BPL prior (Fig 3.1, 3.7(b)) or the supplemental nonparametric BPL prior (Lake et al.,

2015). In Fig. 3.7(b) we show a grid of 36 new character concepts sampled from our generative

53

GNS samples Omniglot neighbors

Figure 3.8: Generating new concepts (unconstrained). 100 new concepts sampled unconditionally
from GNS are shown in a topologically-organized grid alongside a corresponding grid of “nearest
neighbor" training examples. To identify nearest neighbors, we used cosine distance in the last
hidden layer of a CNN classifier as a metric of perceptual similarity. The CNN was trained to
classify characters from the Omniglot background set, a 964-way classification task.

model at reduced temperature setting T = 0.5 (Appendix A.3). The model produces characters in

multiple distinct styles, with some having more angular, line-based structure and others relying

on complex curves. In Fig. 3.8, we show a larger set of characters sampled from GNS, plotted

in a topologically-organized grid alongside a corresponding grid of “nearest neighbor" training

examples. In many cases, samples from the model have a distinct style and are visually dissimilar

from their nearest Omniglot neighbor.

3.6.5 Marginal image likelihoods

As a final evaluation, we computed likelihoods of held-out character images by marginalizing over

the latent type and token variables of GNS to estimate P (I) =
∫
P (ψ, θ, I)∂ψ∂θ. We hypothesized

that our causal generative model of character concepts would yield better test likelihoods compared

to deep generative models trained directly on image pixels. As detailed in Section 3.5.3, under the

54

Model Image Size LL LL/dim

VHE 28× 28 -61.2 -0.0496
SG 52× 52 -134.1 -0.0781
GNS 105× 105 -383.2 -0.0348

Table 3.3: Test log-likelihood bounds.

minimal assumption that our K posterior parses represent sharply peaked modes of the joint density,

we can obtain an approximate lower bound on the marginal P (I) by using Laplace’s method to

estimate the integral around each mode and summing the resulting integrals. In Table 3.3, we report

average log-likelihood (LL) bounds obtained from GNS for a random subset of 1000 evaluation

images, compared against test LL bounds from both the SG (Rezende et al., 2016) and the VHE

(Hewitt et al., 2018) models. Our GNS model outperforms each alternative, reporting the best

overall log-likelihood per dimension.

3.7 Discussion

We introduced a new generative neuro-symbolic (GNS) model for learning flexible, task-general

representations of character concepts. We demonstrated GNS on the Omniglot challenge, showing

that it performs a variety of inductive tasks in ways difficult to distinguish from human behavior.

Some evaluations were still qualitative, and future work will further quantify these results using

Visual Turing Tests (Lake et al., 2015).

Whereas many machine learning algorithms emphasize breadth of data domains, isolating just a

single task across datasets, we have focused our efforts in this paper on a single domain, emphasizing

depth of the representation learned. Human concept learning is distinguished for having both a

breadth and depth of applications (Murphy, 2002; Lake et al., 2019), and ultimately, we would like

to capture both of these unique qualities. We see our character model as belonging to a broader

class of generative neuro-symbolic (GNS) models for capturing the data generation process. We

55

have designed our model based on general principles of visual concepts—namely, that concepts

are composed of reusable parts and locations—and we will later describe how it generalizes to

compositional visual concepts (Chapter 4) as well as real-world object concepts (Section 7.3). As

in the human mind, machine learning practitioners have far more prior knowledge about some

domains vs. others. Handwritten characters is a domain with strong priors (Babcock & Freyd, 1988;

Longcamp et al., 2003a; James & Gauthier, 2009), implemented directly in the human mind and

body. For concepts like these with more explicit causal knowledge, it is beneficial to include priors

about how causal generative factors translate into observations, as endowed to our character model

through its symbolic rendering engine. For other types of concepts where these processes are less

clear, it may be appropriate to use more generic neural networks that generate concepts and parts

directly as raw stimuli, using less symbolic machinery and prior knowledge. We anticipate that

GNS can flexibly model concepts in both types of domains, although further experiments are needed

to demonstrate this.

Our current token model for character concepts is much too simple, and we acknowledge a

few important shortcomings. First, as shown in Fig. A.5, there are a number of scenarios in

which the parses from a training character cannot adequately refit to a new example of the same

character without a token model that allows for changes to discrete variables. By incorporating

this allowance in future work, we hope to capture more knowledge in this domain and further

improve performance. Furthermore, although our vision for GNS is to represent both concepts and

background knowledge with neuro-symbolic components, the current token-level model uses only

simple parametric distributions. In future work, we hope to incorporate token-level models that use

neural network sub-routines, as in the type-level model presented here.

56

Chapter 4

Few-shot learning of structured visual

concepts

4.1 Preface

The experiments of Chapters 2 & 3 provide preliminary support for generative neuro-symbolic

(GNS) models of concept learning. Although the results of these experiments are promising, they

are only a start; handwritten characters lack many of the interesting qualities found in other types

of concepts that people grapple with ease. For example, the variability between different tokens

of a character is limited to simple motor and affine noise. In a sense, a character type represents a

prototype around which unique tokens vary in consistent ways. This contrasts with other conceptual

domains, where tokens of a concept can vary in different ways depending on the type. For example,

tokens of the concept “table” vary in their number of legs (1 vs. 4) or in the shape of their top

(square vs. round), whereas tokens of “dresser” vary in their number of drawer levels and the style

of drawer handle, among other things. Concepts like these call for a more powerful token-level

model.

57

This chapter expands on the GNS framework and studies a new family of visual concepts with

some of the distinguishing qualities discussed above. It is based off a collaborative work with

fellow Ph.D. student Yanli Zhou, currently under peer review and available as a preprint (Zhou

et al., 2023). For the study, Yanli developed a human behavioral experiment to investigate how

people generalize structured visual concepts composed of simple shape primitives. She created a

class of stimuli—dubbed “alien figures"—with are richly hierarchical, compositional and relational.

Each alien figure concept represents a large class of stimuli with significant inter-token variability.

Although highly variable, each concept has rigid rules about the ways that primitives are allowed

to appear and combine with one another, suggestive of a specific form of compositionality. A rich

diversity of composition rules are included in the behavioral experiment. Using the stimuli and

behavioral results from Yanli’s experiment, I conduct a rigorous study to test whether GNS models

can explain the ways that people learn and generalize structured visual concepts. I develop a new

GNS model designed to represent alien figure concepts, as well as a novel meta-training paradigm

that facilitates few-shot learning and helps explain how people generalize from limited examples.

The GNS model is evaluated and compared against a fully-symbolic Bayesian model that manifests

strong domain expertise.

Section 4.2 provides a brief overview of the stimuli and behavioral experiments presented in

Zhou et al. (2023). It also describes a fully-symbolic computational model that was developed as

a preliminary account of human behavior. Importantly, the materials in Section 4.2 are not my

work: they are Yanli’s contribution to our collaborative paper. I include them only to provide the

necessary context and background for my own work, which constitutes the remaining sections of

this chapter.

58

4.2 Structured visual concepts

4.2.1 Stimuli

(attach P P) (map fxA setP)

{ }

(λx (attach P P))

x x

(map fxA setP)

{ }

(λx (attach P P))

x
(attach* P P n)

(map fxA setP)

{ }

(λx (attach P P))

x
(attach P P)

(map fxA setP)

{ }

(λx (attach P P))

x

1

START START START START START START

A

B

(attach* P P n)

1

Figure 4.1: Examples of alien figure stimuli and concepts, derived from Zhou et al. (2023, Fig. 3).
Each figure is a compound shape formed from 1-3 basic shape primitives. The figures are organized
into concepts according to systematic formulas, visualized in (B) as simplified parse trees from a
context-free grammar (Zhou et al., 2023), and the concepts are sampled to form trials for human
experiments.

Zhou et al. (2023) present a human behavioral experiment designed to explore the ways that

people generalize simple visual concepts from just a few examples. In the experiment, participants

are presented with “alien figure" stimuli—compound shapes formed from 1-3 basic shape primitives

(Fig. 4.1)—and prompted to reason about their characteristic structure via one of two distinct

tasks. The stimuli are generated programmatically and grouped according to a variety of systematic

formulas, resulting in a diverse collection of compositional concepts. Fig. 4.1 shows some examples

of these concepts, providing a simplified parse tree for each concept that represents its syntactic

structure according to a context-free grammar (Zhou et al., 2023). As one example, the third column

describes a concept that includes any two-part token composed of two instances of a single primitive.

59

This concept is invariant to the primitive identity, as well as to the attachment between the first and

second instance of the primitive, but it does not allow changes to the number of parts or the number

of unique primitives used in the figure.

4.2.2 Few-shot learning tasks

Here are 3
examples of
a “dax”:

Here are 3
examples of
a “wif”:

Here are 3
examples of
a “blicket”:

Here are 3
examples of
a “lug”:

A B

C D

Figure 4: Model predictions on 4 of the trial types used in Experiment 2. The set of training examples is shown on the top of each panel;
examples of test items were shown at the bottom. Identity test items are identical to one of the examples; Part test items are parts appeared
in one of examples; Novel configurations items were new configurations of parts in examples; Novel part items were conceptually consistent
with examples but contained unseen parts; Higher-level items were configurations with one of examples as subpart; No repetition, No common
and Other items in B,C and D were conceptually inconsistent with examples; Wider items in D are samples from a wider concept for which
the set of possible extensions is a superset of the concept of interest.

ity that the label ly of y is consistent with the set of observed
examples X as

P(ly = 1|X) = Â
h2H

P(ly = 1|h)P(h|X)

where H is the hypothesis space considered in our study.
Approximate posterior inference was implemented in the
LOTlib3 software package (Piantadosi, 2014). For each trial,
we ran 3 Monte Carlo chains for 100,000 steps of a tree-
regeneration Markov chain Monte Carlo (MCMC) procedure
(Goodman et al., 2008).

Parameter fitting. Given behavioral data collected in our
experiments, we are interested in finding the set of grammar
parameters that most likely generated people’s generalization
patterns. Formally, we would like to infer the probability of
the set of parameters of interest, given human response data:
argmax~q,a,b P(~q,a,b|R,Y), where~q, a and b are parameters
of the learning model and R is the set of human responses
to the set of test items Y . To account for possible response
noise in our collected generalization judgements, we fitted
for a lapse rate a, or the probability that a response was made
at random. In the case of a lapse trial, we also represented
a baseline preference for answering Yes with parameter b. ~q
is the set of grammar parameters, which are the probabili-
ties associated with the distribution of expansions for each

non-terminal. We only considered 2 such parameters that
are cognitively meaningful, and we fixed the rest to be uni-
form. The 2 grammar parameters encode participants’ pref-
erences for orientation invariance and configuration invari-
ance, respectively. We discuss the implications of the fitted
values of these parameters in the Results section. The model-
fitting procedure closely followed the one implemented by
Piantadosi, Tenenbaum, and Goodman (2016), in which we
performed posterior sampling of free parameters via MCMC,
using a Dirichlet prior for~q and a uniform prior for a and b.

Alternative models

We compared the Bayesian learning model to two versions of
an exemplar model known as the Generalized Context Model
(GCM) (Nosofsky, 1986). In a GCM, the probability of a new
data item belong to a given concept is evaluated based on how
similar the new observation is to the training examples:

P(ly = Yes|X) µ
1
k

k

Â
i

exp(�w ·d(y,xi))

where d is a distance function and w a scaling factor. The
two variants of GCM implemented used different distance
measures.

Here are 3
examples of
a “dax”:

Here are 3
examples of
a “wif”:

Here are 3
examples of
a “blicket”:

Here are 3
examples of
a “lug”:

A B

C D

Figure 4: Model predictions on 4 of the trial types used in Experiment 2. The set of training examples is shown on the top of each panel;
examples of test items were shown at the bottom. Identity test items are identical to one of the examples; Part test items are parts appeared
in one of examples; Novel configurations items were new configurations of parts in examples; Novel part items were conceptually consistent
with examples but contained unseen parts; Higher-level items were configurations with one of examples as subpart; No repetition, No common
and Other items in B,C and D were conceptually inconsistent with examples; Wider items in D are samples from a wider concept for which
the set of possible extensions is a superset of the concept of interest.

ity that the label ly of y is consistent with the set of observed
examples X as

P(ly = 1|X) = Â
h2H

P(ly = 1|h)P(h|X)

where H is the hypothesis space considered in our study.
Approximate posterior inference was implemented in the
LOTlib3 software package (Piantadosi, 2014). For each trial,
we ran 3 Monte Carlo chains for 100,000 steps of a tree-
regeneration Markov chain Monte Carlo (MCMC) procedure
(Goodman et al., 2008).

Parameter fitting. Given behavioral data collected in our
experiments, we are interested in finding the set of grammar
parameters that most likely generated people’s generalization
patterns. Formally, we would like to infer the probability of
the set of parameters of interest, given human response data:
argmax~q,a,b P(~q,a,b|R,Y), where~q, a and b are parameters
of the learning model and R is the set of human responses
to the set of test items Y . To account for possible response
noise in our collected generalization judgements, we fitted
for a lapse rate a, or the probability that a response was made
at random. In the case of a lapse trial, we also represented
a baseline preference for answering Yes with parameter b. ~q
is the set of grammar parameters, which are the probabili-
ties associated with the distribution of expansions for each

non-terminal. We only considered 2 such parameters that
are cognitively meaningful, and we fixed the rest to be uni-
form. The 2 grammar parameters encode participants’ pref-
erences for orientation invariance and configuration invari-
ance, respectively. We discuss the implications of the fitted
values of these parameters in the Results section. The model-
fitting procedure closely followed the one implemented by
Piantadosi, Tenenbaum, and Goodman (2016), in which we
performed posterior sampling of free parameters via MCMC,
using a Dirichlet prior for~q and a uniform prior for a and b.

Alternative models

We compared the Bayesian learning model to two versions of
an exemplar model known as the Generalized Context Model
(GCM) (Nosofsky, 1986). In a GCM, the probability of a new
data item belong to a given concept is evaluated based on how
similar the new observation is to the training examples:

P(ly = Yes|X) µ
1
k

k

Â
i

exp(�w ·d(y,xi))

where d is a distance function and w a scaling factor. The
two variants of GCM implemented used different distance
measures.

Is this also a "wif?" (y/n) Can you make another "dax?"

Categorization Generation

Here are 3
examples of
a "dax":

Human
generations

Figure 4.2: Categorization and generation tasks from Zhou et al. (2023). In both tasks, participants
are first familiarized with a new alien figure concept through a collection of exemplars. In cate-
gorization, participants are then shown a set of query stimuli and asked to answer yes/no whether
each is a member of the category. In generation, participants are instead asked to generate another
example of the concept using by composing basic shape primitives with a web tool.

Human participants were recruited via Amazon’s Mechanical Turk and asked to perform one

of two tasks that evaluate their ability to learn and generalize alien figure concepts from limited

examples (Fig. 4.2). In each task, the participant is first familiarized with a novel alien figure

concept via a set of 1-6 exemplars. In the categorization task, the participant is then presented with

a series of query stimuli and asked to answer yes/no as to whether they believe each query to be an

60

instance of the familiarized concept. In the generation task, the participant is not shown any new

stimuli but is instead asked to generate another example of the concept. To generate an example,

the participant is provided a web interface that enables them to construct alien figure compounds by

selecting and piecing together primitives akin to children’s building blocks.

4.2.3 Symbolic Bayesian model

Zhou et al. (2023) develop a fully-symbolic model as a preliminary account for human few-shot

learning of alien figure concepts, using an approach inspired by probabilistic language of thought

models (Goodman et al., 2008; Piantadosi et al., 2016). Concept learning is modeled as Bayesian

reasoning over structured hypotheses in a probabilistic context-free grammar. Each hypothesis h

defines criteria that must hold true for category membership, implicitly specifying a concept and its

constituent tokens. Given a set of observed examples X = {x1, ..., xn} the model uses Bayes rule

to reason about the most probable a posteriori hypotheses,

P (h|X) ≈ P (h)P (X|h). (4.1)

The prior P (h) is defined by a probabilistic grammar (Zhou et al., 2023, Section 1.2.2), and the

likelihood P (x|h) of new tokens given hypothesis h is a simple uniform distribution over the tokens

that satisfy membership in h.

Inference for few-shot learning uses Metropolis-Hastings with subtree regeneration (Goodman

et al., 2008) to sample from the posterior P (h|X). The specific algorithm varies between the

categorization and generation tasks. Categorization introduces a new likelihood P (ly = 1|h)

to represent the probability of answering “yes" about whether a new token y is consistent with

hypothesis h, and then derives a novel formula to model categorization responses from examples.

Generation, on the other hand, uses the canonical posterior predictive distribution P (y|X) for new

61

tokens y given observations X , obtained by marginalizing over available hypotheses:

P (y|X) =
∑
h∈H

P (y|h)P (h|X). (4.2)

The probabilistic grammar for P (h) has a number of hyperparameters, and these parameters are

optimized separately in each task for overall fit to human data from the task. Additional details

about the model are provided in Sections 1.2 & 2.2 of Zhou et al. (2023).

4.3 Generative neuro-symbolic (GNS) model

Symbolic probabilistic models like the one from Section 4.2.3 provide an elegant and interpretable

account of human behavior; however, these models make simplifying and rigid parametric assump-

tions, and as result, they often leave portions of the data unexplained. For example, the Bayesian

program induction model assumes that all constituent tokens xi of a hypothesis h are sampled with

equal probability. This assumption appears at odds with humans, who at times exhibit a preference

for certain tokens over others within a particular grouping (Zhou et al., 2023, Fig. 7C&D). Although

there may be an ad-hoc rule to explain each behavioral nuance like this, engineering such primitives

would involve a considerable effort, and the complexity of the resulting model could quickly grow

out of hand. Alternatively, we could let the data speak for itself by integrating more powerful

data-driven modeling components.

In pursuit of a more complete computational account with much of the same structure and inter-

pretablility, we propose to model human concepts of alien figures as neuro-symbolic probabilistic

programs. This paradigm, known as Generative Neuro-Symbolic (GNS) Modeling, was shown to

provide an effective framework for understanding another type of compositional visual concept:

handwritten letters from different alphabets (Chapters 2 & 3). As in the fully-symbolic Bayesian

model, the aim of GNS is to infer the best causal generative process for explaining the visual

62

examples. Unlike symbolic models, GNS further represents nonparametric statistical relationships

between parts in a token, and between tokens in an observation, providing a more flexible model

with fewer a priori assumptions. Moreover, a GNS model can be estimated directly from training

data, providing an effective data-driven approach. An important component of our approach is that

we train GNS to mimic the Bayesian program induction model by using the Bayesian model to

generate some of its training data, while also including real human data so that GNS can go further

to capture additional structure in human behavior.

Figure 4.3: Overview of GNS model. A neural encoder first reads each support example with a
convolutional neural network (CNN) and aggregates the resulting vectors into a single, fixed-sized
embedding. This encoder embedding is then passed to a GNS decoder–expressed as probabilistic
program GenerateToken–that generates new tokens one part at a time, using an image canvas
C as memory. At each part iteration i, the current canvas C and encoder embedding x are first fed
to subroutine GeneratePart which generates the primitive ID ci of the next part. Next, C, x
and ci are passed to subroutine GenerateRelation which samples a relation specification ri
for the part. Finally, a symbolic renderer updates the canvas according to ci and ri, and subroutine
Terminate decides whether to terminate the token.

A depiction of the proposed GNS model is given in Fig. 4.3. Similar to our previous model

of handwritten characters (Chapters 2 & 3), our GNS model of alien figures uses the control

flow of a probabilistic program, coupled with an external image memory, to represent the causal

63

process of generating new concepts. Through repeated calls to subroutines GeneratePart and

GenerateRelation the model maintains a representation that is compositional, providing and

appropriate inductive bias for compositional generalization. Each of these modular subroutines is

expressed as a neural network that generates symbolic outputs conditioned on the current program

state (Fig. 4.4). New from prior work, we augment the GNS model with an image encoder to account

for the ways that people induce conceptual representations from exemplars in the current behavioral

experiment. With this addition, we can use our GNS model as a proxy to the Bayesian model’s

posterior predictive distribution (Zhou et al., 2023, Eq. 5). Given a set of support exemplars, the

encoder first reads each exemplar using a convolutional neural network (CNN) and then aggregates

the individual responses to form a single vector embedding of the set. This embedding is passed

to the decoder and used to condition a generative model for new tokens. Both the encoder and

the decoder use a coloring scheme for alien figure images that associates each primitive from our

primitive bank with a unique RGB color.

4.3.1 Encoder

The support encoder (Fig. 4.3, left) consists of a convolutional neural network (CNN) backbone

and a transformer aggregator. The CNN first reads each exemplar in the support set, represented

as an 80× 80 RGB image, and encodes the image to a 256-dimensional vector. The sequence of

CNN vectors is then fed to a transformer encoder, which processes the variable-length sequence

and outputs an aggregate vector encoding of the set.

4.3.2 Decoder

Our GNS decoder (Fig. 4.3, right) generates new tokens by sampling a sequence of symbolic

primitives {θ, c1:κ, r1:κ, } which together specify a unique instance of an alien figure concept with κ

parts. Part assignments ci convey the category of the ith part, chosen from a dictionary of 9 basic

64

primitive categories, and relations ri specify how the ith part attaches to previously-generated parts,

with r1 assigned to null. Each attachment specification ri encompasses 3 unique sub-choices: an

index j of the previous part onto which the current part i will attach, and a choice of polygon sides

sj and si for the previous and current part that will touch at the point of attachment.

A B

Figure 4.4: GNS Subroutines. (A) Subroutine GeneratePart first reads the image canvas
with a CNN and concatenates the response with encoder embedding x. The combined vector is
then processed by a dense layer and passed to a softmax prediction head that yields a categorical
distribution to sample the next primitive ID ci. (B) Subroutine GenerateRelation similarly
reads the canvas with a CNN, this time concatenating with both the encoder embedding x as well
as primitive ID ci from GeneratePart. The combined vector is processed by a dense layer and
then passed to a relation prediction head that yields a probability distribution to sample the next
relation ri (see Fig. B.1 for additional details).

The generative process to sample a new token conditioned on support embedding x proceeds as

follows. We first initialize an empty image canvas, C, that will maintain the state of the sample.

Next, we sample a global orientation θ for the token from subroutine GenerateOrientation.

This is an additional neural network module that is used only once at the start of the sample and

it selects from 4 discrete orientation choices. From there, we iteratively sample the next part and

65

next relation from subroutines GeneratePart and GenerateRelation until a termination is

reached. Each of these sample steps conditions on the support, as well as the current partial-object,

by reading x and C as neural network inputs. This design enables the model to capture complex

correlations that permeate through multiple parts of an object, or that connect a new object to

support examples. At the end of each iteration, we update our canvas C with the latest partial-object

using a symbolic image renderer and pass the new canvas to subroutine Terminate, a neural

network that decides whether to terminate the object or continue with another part.

The architectures of the neural networks for GeneratePart and GenerateRelation are

depicted in Fig. 4.4. In GeneratePart, a CNN embeds the current image canvas to a vector

and concatenates it with the encoder embedding. The combined vector is then processed by a

fully-connected (dense) layer, and a softmax layer then predicts a categorical distribution for the

primitive ID of the next part. In GenerateRelation, a CNN similarly encodes the image

canvas, this time concatenating the resulting vector with both the encoder embedding as well as a

discrete embedding of the primitive ID chosen in the previous step. The concatenated vector is then

processed by a dense layer and fed to an attention-style prediction head. Using this input and an

attention-style weighting scheme, the prediction head outputs a distribution over discrete choices

for how and where the new part will attach to previous ones in the canvas (Fig. B.1).

4.4 Training with meta-learning

The objective of few-shot generation is to generate new tokens of a concept given a limited set of

support exemplars. In the Bayesian setting, this task is modeled as sampling from the posterior

predictive probability p(y | X) of a new token y given a support set X = {x1, ..., xn} consisting of

n exemplars. Our GNS model provides a nonparametric analogue to the posterior predictive that

can be estimated directly from training data, written p(y | X) ≈ fθ(y;X), where f represents the

model approximation parameterized by θ. To train GNS effectively, we borrow a paradigm from AI

66

procedure P
h ∼ p(h) . Sample formula hypothesis from prior
S = x1, ..., xn ∼ p(x | h) . Sample support set from formula
Q = x′1, ..., x

′
n ∼ p(x | h) . Sample query set from formula

return S,Q

procedure R
S ∼ Uniform(Φ) . Sample support set from human trials
h ∼ p(h | S) . Sample formula hypothesis from posterior
Q = x′1, ..., x

′
n ∼ p(x | h) . Sample query set from formula

return S,Q

procedure H
S,Q ∼ Uniform(Φ) . Sample support & query sets from human trials
return S,Q

1

Figure 4.5: Data distributions for meta-learning.

known as meta-learning (Hospedales et al., 2022). Each input or “episode" provided to the model

consists of 1) a set of support tokens, a.k.a. exemplars, and 2) a set of query tokens for the model to

evaluate. Through these episodes the model learns-to-learn, capturing overarching patterns that

connect queries to support and learning to quickly grasp new concepts from exemplars.

As with any statistical estimator that uses neural networks, our GNS model calls for a sizeable

training dataset to avoid overfitting and ensure adequate generalization. The behavioral dataset

from our generation task consists of just 155 trials in total, an insufficient amount of data by itself.

To fill in the gap, we use our symbolic Bayesian model to bootstrap GNS training with a vast

supply of synthetic meta-learning data. Specifically, we use the Bayesian model to form two distinct

distributions for generating training data (Fig. 4.5). In the first distribution P, episodes are generated

by first sampling a hypothesis h from the prior and then sampling a support set S and query set Q

from the likelihood p(X | h) (Zhou et al., 2023, Eq. 3). In a second distribution R, episodes are

generated by sampling a support set S uniformly from the human experiment and then sampling

queryQ via the posterior of the Bayesian model. In addition to these two synthetic data distributions,

we also use real human data, dubbed distribution H, as part of the training mix. Episodes from H

are sampled uniformly from the human experiment.

67

Figure 4.6: Meta-learning episodes. Each episode consists of 1) a support set X of 1-6 examples
that demonstrate the concept, and 2) a query set of additional tokens for evaluation y1, y2, The
GNS model is trained to maximize the conditional log-likelihood of each query token given the
support examples.

In addition to the P, R and H distributions described above, we make use of one additional data

distribution, C, which provides concerted training of two inductive biases that were prominent in

human behavior during the generation task, and yet that the Bayesian program induction model

is unable to capture. In trials where the support exemplars convey a partial pattern with one item

apparently left out, participants exhibit two salient inductive biases, both of which are noted in Zhou

et al. (2023, Section 2.3.1(ii)). First, people demonstrate a strong preference to complete the pattern

by generating the last remaining item. We refer to this tendency as the complete-the-pattern bias,

and it occurs an aggregate 59% of the time in applicable trials. When not completing the pattern,

people exhibit a second, slightly weaker inductive bias that we denote the reconfigure bias. This

bias is characterized by a preference to take the familiarized primitives and reconfigure them into

a novel, multi-part object. Participants exhibit the reconfigure bias an aggregate 14% of the time

in the applicable trials. Our concerted bias training distribution, C, is designed to teach the GNS

model these biases and help guide it toward generalizing in more human-like ways. Appendix B.2

provides details about how episodes are generated from C.

68

4.5 Experiments

Our first experiment is designed to test whether the GNS model can successfully learn to generate

new tokens from exemplars, and to determine what training distributions are most important for

learning this task. For the experiment, we constructed a test set of human data consisting of 1

randomly-selected trial from each trial type in the generation task (see Zhou et al. (2023, Section

2.1.1) for details on trials & trial types). The remaining 4 trials of each type are provided for

model training. By reserving a portion of the human data for test time, we can use log-likelihood

evaluations to assess whether the GNS model generalizes to novel trials with unseen behavioral

data, and to compare the behavioral account of GNS to that of the Bayesian model.

Model log-likelihood t-statistic (p-value)

Bayesian -4.741 -
GNS (P/R/H/C) -4.444 6.197 (0.000)
GNS (P/R/H) -4.535 4.549 (0.000)
GNS (P/R) -4.645 2.490 (0.013)
GNS (P) -4.930 -2.739 (0.006)

Table 4.1: Holdout log-likelihoods. For each model, the average log-likelihood per human token is
reported in the first column. For each GNS model, we perform a paired t-test to test for improvement
over the Bayesian model. The full GNS model, and all but one lesion model, show an improved
behavioral fit over the Bayesian model, fortified by significant t-test results.

Our full GNS model, GNS (P/R/H/C), uses a mixture of all four training distributions described

in the previous section. This represents our most comprehensive training environment, and we

anticipate that the resulting model will outperform alternatives that receive only a subset of the

proposed training distributions. We test a series of these alternatives. The first, GNS (P/R/H),

receives all but the bias training distribution C. In addition, we also evaluated two lesions that

receive only synthetic data from the Bayesian model. One of these, GNS (P/R), receives data from

both of the two synthetic generators. The other, GNS (P), uses only the forward-sampling modality

P. Each of our models is trained using minibatches of 60 meta-learning episodes (Appendix B.2).

69

Log-likelihood results for held-out human data are shown in Table 4.1. When evaluating test

log-likelihoods, we mix the model distribution with a naive lapse distribution using weight α that is

independently tuned for each model (Section B.3). Our full GNS model, GNS (P/R/H/C), performs

the strongest on held-out data and shows a considerable improvement in log-likelihood over the

Bayesian model. The improvement is further validated by a significant paired t-test that looks at

per-token difference in log-likelihood ℓ(θ)− ℓ(θ0) between the GNS model, θ, and Bayesian model

θ0 [t(336) = 6.197, p < 0.001]. After lesioning the bias training distribution, our GNS (P/R/H)

model still exhibits a significant log-likelihood improvement over Bayesian program induction,

although the gain is smaller. The simplest lesioned model, GNS (P), performs the weakest on

held-out data and does not show a significant improvement over the Bayesian model. This result

matches our intuition: the space of possible episodes generated from P is vast, and so it is unlikely

that the model will receive sufficient experience with the types of support sets that are relevant to our

human experiment. Our second lesion, GNS (P/R), is the first to outperform the symbolic Bayesian

model and show a statistically significant improvement in log-likelihood. Like GNS (P), this model

is trained solely on synthetic data from the Bayesian model; however, the way that episodes are

sampled in R—by selecting a support S from the human experiment and then sampling query Q

from the Bayesian posterior—ensures that a sufficient amount of relevant training experience is

provided.

To help understand how and where our full GNS model outperforms Bayesian program induction,

Fig. 4.7 shows some of the top-performing examples where the log-likelihood improvement is

largest (a more exhaustive set of best and worst examples is provided in Fig. B.2). The GNS model

does particularly well with the two-part concept from rows 1, 2, and 3. In this trial, the size principle

pushes the Bayesian model to assign most posterior weight to an attachment-specific hypothesis,

so when a new token is shown with a different attachment, it loses out. GNS also outperforms on

the completion bias example from row 4, a result that is expected since the model receives explicit

completion bias training from distribution C. In row 5, the Bayesian model assigns a majority of

70

Figure 4.7: A subset of most-improved examples, measured by ℓ(GNS) - ℓ(Bayes).

posterior weight to a primitive-specific hypothesis, and it therefore suffers on the human-generated

token that uses a new primitive. The concept from rows 6, 7 and 8 has a salient visual compound

that likely guides stronger generalization in human participants, but the Bayesian model is not aware

of the compound. The GNS model, however, is capable of picking up on this visual pattern and

mirroring human generalization.

To further understand how and whether the GNS model provides an improved account of human

inductive biases, we conducted an additional experiment designed to give a more in-depth look at the

complete-the-pattern and reconfigure biases discussed in Section 4.4 & Zhou et al. (2023, Section

2.3.1). We emphasize these two biases in particular because a) they are the most prevalent inductive

biases that we find in the human behavioral data, and b) they are not currently well-explained by

the Bayesian model. To evaluate whether the GNS model can capture these biases, we created

71

Here are 3
examples
of a ‘dax’:

Here are 3
examples
of a ‘wif’:

Here are 3
examples
of a ‘wif’:

Here are 3
examples
of a ‘lug’:

Here are 3
examples
of a ‘lug’:

Here are 3
examples
of a ‘dax’:

Here are 3
examples
of a ‘kiki’:

Here are 3
examples
of a ‘kiki’:

Rotations-1

Rotations-2

Primitives-1

Primitives-2

Figure 4.8: Inductive biases captured by the GNS and Bayesian models. Two trials are shown from
each of four trial types with the partial-pattern property. Bars convey the marginal model probability
of generating a new token that matches the target bias, and the empirical human frequency of doing
so. In each trial, GNS exhibits a stronger completion bias vs. the Bayesian model that more closely
matches human behavior. Moreover, the GNS model provides a closer match to human frequency
for the reconfigure bias, assigning a non-zero probability where Bayes does not and showing a more
modest probability where Bayes overpredicts.

72

a test set with all 19 trials that contain the partial-pattern property discussed, as well as 7 other

randomly-selected trials from the generation task. We then trained the full GNS (P/R/H/C) model

using only the remaining trials for the human distribution H. Fig. 4.8 shows the strength of the

GNS model’s inductive biases for a selection of test trials after training, comparing against both

the Bayesian model and humans. The Rotations-N trial type consists of N-part tokens with a

rotation pattern, and Primitives-N consists of N-part tokens with a primitive assignment pattern.

People consistently exhibit a strong completion bias across different trial types, and the GNS model

largely replicates this bias, showing a marginal probability for completion tokens that is often much

closer to the human frequency compared with the Bayesian model. In addition, the GNS model’s

reconfigure bias matches humans in strength more closely than the Bayesian model, showing more

accurate probabilities where the Bayesian model overpredicts in Rotations-2 trials, and where it

underpredicts in Primitives-1 trials.

4.6 Discussion

This chapter demonstrates that generative neuro-symbolic (GNS) models can provide an effective

means to understand and simulate human behavior in few-shot generation of structured visual

concepts. When trained with a novel meta-learning scheme that mixes synthetic and real human

data, our GNS model successfully mimics the symbolic Bayesian model and goes beyond to capture

additional human biases that were not previously well explained. Our full GNS model shows a

considerable improvement in likelihood of held-out participant data, and it provides an improved

account for two salient inductive biases that participants exhibit: the complete-the-pattern bias and

the reconfigure bias. In addition to these salient inductive biases, the GNS model also provides an

account for a collection of one-off behaviors that do not fit into a larger bias category (Fig. 4.7).

73

Chapter 5

Learning inductive biases with simple neural

networks

5.1 Preface

This chapter studies the acquisition of inductive biases in neural networks and is based off of

our paper Feinman & Lake (2018). At the time of publication, a recent study had just come out

highlighting exciting new connections between neural network models trained for object recognition

and classical results from developmental psychology (Ritter et al., 2017). These results opened

many new questions about whether and how neural networks learn in ways similar to humans. Our

study builds from Ritter et al. (2017) and addresses a range of unanswered questions about how

neural networks acquire inductive biases that are influential in child learning. Using a paradigm

from developmental psychology Smith et al. (2002) we study the conditions required for neural

networks to acquire the shape bias–a preference to organize objects by shape vs. other observed

attributes–from stimuli containing basic patterns and shapes. These controlled stimuli allow us

to systematically vary the quantity and form of the experience provided. We found that simple

74

neural networks develop a shape bias after seeing as few as 3 examples of just 4 object categories.

Moreover, the development of these biases predicts the onset of vocabulary acceleration in neural

networks, consistent with the developmental processes in children.

This chapter is the first of two works studying how neural network models acquire inductive

biases and use them to support future learning (“learning-to-learn"). Chapter 6 builds on this work

and develops a new framework for modeling learning-to-learn in neural networks as hierarchical

Bayesian inference.

5.2 Introduction

Humans possess the remarkable ability to learn a new concept from seeing just a few examples. A

child can learn the meaning of a new word such as “fork" after observing only one or a handful of

different forks (Bloom, 2000). In contrast, state-of-the-art artificial learning systems use hundreds

or thousands of examples per class when learning to recognize the same objects (e.g., Krizhevsky

et al., 2012; Szegedy et al., 2015). Consequently, significant effort is ongoing to understand what

cognitive and neural mechanisms enable efficient concept learning (Lake et al., 2017). In this

chapter, we perform a series of developmentally-informed neural network experiments to study the

computational basis of efficient word learning. An open-source implementation of the experiments

is available at http://github.com/rfeinman/learning-to-learn.

If a learner extrapolates beyond the data, then another source of information must make up

the difference; prior knowledge or “inductive biases" must help constrain the space of models

considered by the learner (Tenenbaum et al., 2011; Michalski et al., 2013; Lake et al., 2017). For

example, children make use of the shape bias–the assumption that objects with the same name will

tend to have the same shape–when learning new object names, and thus they attend to shape more

often than color, material and other properties when generalizing a novel name to new examples (Fig.

5.1(b)) (Landau et al., 1988). Similarly, children assume that object names are mutually exclusive,

75

http://github.com/rfeinman/learning-to-learn

1st-order Generalization Test 2nd-order Generalization Test (the
shape bias test)

“wif”

This is a “dax.”

Where is the other “dax?”

1 2 3

This is a “wif.”

Where is the other “wif?”

“wif” “wif” “wif”

1 2 3

(a)

1st-order Generalization Test 2nd-order Generalization Test
(the shape bias test)

“wif”

This is a “dax.”

Where is the other “dax?”

1 2 3

This is a “wif.”

Where is the other “wif?”

“wif” “wif” “wif”

1 2 3

(b)

Figure 5.1: Shape bias generalization tests. The 1st-order test, shown in (a), assesses if a child has
learned to generalize a familiar object name to a novel exemplar according to shape. This is the first
step of shape bias development. The 2nd-order test, shown in (b), assesses if the child has learned
to generalize a novel name to a novel exemplar by shape, the second and final step of shape bias
development.

i.e. that a novel name probably refers to a novel object rather than a familiar object (Markman

& Wachtel, 1988). Although the origin of inductive biases is not always clear, results show that

children, adults and primates can “learn-to-learn" or form higher-order generalizations that improve

the efficiency of future learning (Harlow, 1949; Smith et al., 2002; Dewar & Xu, 2010).

Researchers have proposed a number of computational models to explain how inductive biases

are acquired and harnessed for future learning. Hierarchical Bayesian Models (HBMs) enable

probabilistic inference at multiple levels simultaneously, allowing the model to learn the structure

of individual concepts while also learning about the structure of concepts in general (A. Gelman et

al., 2013; Kemp et al., 2007; Salakhutdinov et al., 2012). These models have been used to explain

various forms of “learning-to-learn," including learning a shape bias (Kemp et al., 2007). However,

76

it is currently difficult to apply HBMs to the type of high-dimensional visual and auditory stimuli

that children receive; there have been successes (Salakhutdinov et al., 2013; Lake et al., 2015), but

neural networks are still the most general solution to learning effectively from many different forms

of raw data (LeCun et al., 2015). Utilizing this property, here we use neural networks to study

learning-to-learn in different settings of varying stimulus complexity, with the goal of isolating the

fundamentals of the learning dynamics.

Most related to our work here are studies by Colunga & Smith (2005) and Ritter et al. (2017)

investigating neural network accounts of shape bias development. Colunga & Smith (2005) showed

that a simple recurrent neural network, trained via Hebbian learning, can acquire a shape bias for

solid objects and a material bias for non-solid objects. These simulations demonstrate that neural

networks can form different expectations for different kinds of objects, but they raise many new

questions regarding the conditions required to develop these types of biases. For example, the

authors used highly simplified bit-vector data, and it is unclear whether their findings generalize

to more complex or realistic stimuli. Furthermore, the authors did not systematically vary the

quantity of experience provided to the networks, and thus we do not know the exact conditions in

which biases arise and whether these networks can compete with the strong sample efficiency of

HBMs (Kemp et al., 2007). In a recent study, Ritter et al. (2017) found that performance-optimized

deep neural networks (DNNs) develop the shape bias when trained on the popular ImageNet object

recognition dataset consisting of raw naturalistic images. These results highlight an exciting possible

connection between large-scale DNNs and developmental psychology, though many questions still

remain. ImageNet–which contains about 1200 labeled examples of 1000 different object categories–

is a poor proxy for the experience of a developing child, who typically develops a shape bias with no

more than 50-100 object words in her vocabulary (Gershkoff-Stowe & Smith, 2004). Whether these

networks can acquire the shape bias with more appropriate training sets is unclear. Furthermore,

although the development of the shape bias is known to predict the onset of vocabulary acceleration

in children (Gershkoff-Stowe & Smith, 2004), we do not know whether the same holds for DNNs.

77

In a related study, Hill et al. (2017) trained a neural network agent to navigate around a virtual

3D world and collect objects according to name-based language commands. Although the authors

draw inspiration from developmental psychology, the agent in this experiment is asked to learn a

variety of tasks simultaneously: visual perception, language comprehension and navigation. Further

work is necessary to isolate the dynamics of learning-to-learn in neural networks.

We investigate the development and influence of inductive biases in neural networks using

artificial object stimuli that allow us to systematically vary the quality and form of the experience

provided. Specifically, we use an experimental paradigm from developmental psychology (Smith et

al., 2002) to train and evaluate the networks. Beginning with simple bit-vector data akin to Colunga

& Smith (2005), we systematically vary the number of categories and the number of examples in the

training set, each time evaluating the resulting network for two different forms of generalization (Fig.

5.1). Parallel experiments are then performed with raw image data, where each image consists of a

2D object with a particular shape, color and texture. For both the bit-vector and image stimuli, we

analyze the perceptual similarity of our corresponding networks as a function of stimulus distance

along shape and color dimensions, gauging the parametric sensitivities to these attributes. In a final

set of experiments, we examine the dynamics of learning-to-learn by analyzing the relationship

between shape bias acquisition and the rate of word learning, mirroring an analogous study from

developmental psychology (Gershkoff-Stowe & Smith, 2004).

5.3 Experimental Paradigm

We set out to train neural networks with a learning paradigm used to guide toddlers to the shape

bias (Smith et al., 2002). In this paradigm, the learner acquires new object names that are organized

exclusively by shape, such that different instances of the same object category are identical in shape

but contrast sharply in color and material. This is reflective of the fact that a child’s early noun

vocabulary consists predominantly of shape-based categories (Samuelson & Smith, 1999), although

78

not with the same purity as provided in the shape bias training. As in previous computational

modeling work (Kemp et al., 2007; Colunga & Smith, 2005), we focus on purified training with

shape-based categories, since it provides a controlled test of the artificial learner’s ability to make

higher-order generalizations across varying quantities of training experience.

In Smith et al. (2002), 17-month-old children were taught 4 new object names (“wif”, “dax”,

etc.) over 7 weeks via weekly play sessions. Objects in the study were 3D formations constructed

of various materials; each object contained a specific shape, color and texture (material), and their

names were organized strictly by shape. During weekly sessions, children played with each object

while an adult announced its name repeatedly. By the end of the study, the children had acquired

a shape bias–i.e., they had formed the inductive bias that a novel name should be generalized by

shape as opposed to color or texture. A control group of children who did not partake in the play

sessions did not form this bias.

We use the training paradigm of Smith et al. (2002) to study inductive bias learning in neural

networks with artificial object datasets. We first perform our computational experiments with

abstract bit-vector stimuli, followed by experiments with raw image data. Each constructed object is

assigned a shape, color and texture. We train simple neural networks to label objects with category

names based on shape. To understand the necessary conditions for successful inductive bias learning,

training is performed with various dataset sizes, varying both the number of categories and the

number of examples of each category provided to the network. We evaluate the generalization

capabilities of the network for each training set using 2 generalization tests modeled after the 2 tests

of Smith et al. (2002), depicted in Fig. 5.1.

1st-order generalization test. For this test, toddlers are first presented with an exemplar object

that they have seen during training (“wif” in Fig. 5.1a). Then, they are presented with 3 test objects

that they have not seen: 1 that matches the exemplar in shape (item 1 in Fig. 5.1a), 1 that matches in

color (item 2), and 1 that matches in texture (item 3). For each potential match, the other 2 stimulus

attributes are novel. The toddlers are asked to select which of the 3 test objects share the same name

79

as the exemplar. Performance is measured as the fraction of trials in which the child selected the

correct object, i.e. the shape match. To simulate this test, we create an evaluation set containing

groupings of 4 sample objects: an exemplar, a shape match, a color match, and a texture match. The

activations of our network’s hidden layer are obtained in response to each object. We then evaluate

the cosine similarity between the activations of the exemplar and each test object to determine which

object the network perceives to be most similar. Accuracy is defined as the fraction of groupings for

which the correct (shape-similar) object is chosen.

2nd-order generalization test. For this test, toddlers are first presented with an exemplar object

that has a novel label (e.g., “teema”) as well as a novel shape, color and texture. From there, the

trial proceeds similarly to those of the 1st-order: a shape match, color match and texture match are

presented, and the child must select which test object she believes to share a name with the exemplar.

All shapes, colors and textures are novel to the child in this test. We simulate the 2nd-order test

with artificial object stimuli similarly to the 1st-order case, again using last hidden layer features to

evaluate perceptual similarity.

In all simulations, we record accuracy over 1000 simulated test trials as the performance metric

for each generalization.

5.4 Experiment 1: Multilayer perceptron trained on synthetic

objects

Our first experiment aims to study inductive bias learning in its purest form, using synthetic stimuli

with maximal control. Objects are abstract binary patterns, divided into 3 input pools of 20 binary

units each (representing the shape, color and texture of the objects; see Fig. 5.2). We varied the

number of categories and number of examples per category in the training set. For datasets with

N categories and K examples, we randomly generate N shape patterns, N color patterns, and N

texture patterns. For all 3 attributes, each pattern is replicated K times, ensuring equal entropy

80

… … …

Shape Color Texture

…30 ReLU units,
L2 reg.

Object Name
…

…

… …

……

…

“zup”

“zup”

“wif”

Figure 5.2: Multilayer perceptron architecture. Shape, color and texture attribute vectors are
concatenated and fed to a 30-unit hidden layer, followed by a classification layer. 3 example input
objects are shown (only one is presented at a time to the network).

across the 3. The shape patterns are then aligned with object labels, and the remaining 2 attributes

are permuted randomly to create the dataset. A holdout set of shapes, colors and textures is retained

for the generalization tests.

We train a multilayer perceptron (MLP) to name objects, as shown in Fig. 5.2. The network has

an input layer of 60 units, a hidden layer of 30 rectified linear units (ReLUs) with L2 regularization,

and a softmax output layer to classify the object by name. The softmax layer has N units (1 for

each label). We train the network for 200 epochs using negative log-likelihood loss, RMSProp, and

batch size min(32, N∗K
5

). For details about the selection of architectures and training parameters in

Experiments 1 & 2, see Appendix C.

Results. Initially, as would be expected given the data format, shape is treated the same as other

attributes. In the 2nd-order generalization test, a randomly initialized network selects test objects

with the following ratios, on average (50 trials): shape 35%, color 33% and texture 32%. We then

trained the network with various dataset sizes. Results for the 1st- and 2nd-order generalizations

are shown in Fig. 5.3, where each setup is an average over 10 networks with different random

81

Figure 5.3: MLP generalization results for shape bias training with various training set sizes. The
number of categories and number of examples per category provided to the network are shown on
the x and y axes, respectively. Plots show accuracy over 1000 trials of the specified generalization
test, averaged from 10 training runs. The same data is shown in both contour and heatmap format.
With 2 categories, only 8 unique examples are feasible; thus, N/A results are blacked out.

seeds. We note that acquisition of the 1st-order generalization requires less data than that of the

2nd-order, as predicted by the 2-phase hypothesis (Smith et al., 2002). Success in the 1st-order

test indicates that the network is learning successfully and generalizing to new examples of the

training classes. Networks that achieve an accuracy of 0.7 or higher on the 2nd-order test show a

substantial shape bias, and the MLP reaches this threshold at the following points: N=2 & K=6

(accuracy 0.71) and N=4 & K=3 (accuracy 0.80). These results reproduce the general pattern of the

Hierarchical Bayesian Model (HBM) in Kemp et al. (2007) and toddlers in Smith et al. (2002), who

neared the 0.7 shape bias threshold with N=4 & K=2 (although the toddlers also receive external

experience). In contrast, Colunga & Smith (2005) used N=10 & K=100 to obtain the shape bias

in their networks, using similar abstract patterns. Although HBMs are often noted for their data

efficiency, in this case, the neural network was competitive for making 2nd-order generalizations

from limited data.

As another way of demonstrating the learned sensitivity to shape, we perform parametric

manipulations of the stimuli. Using an MLP trained with N=4 & K=6, we probe the shape bias

by selecting a novel test stimulus and systematically flipping bits, recording the network similarity

between the modified stimulus and the original. For comparison, a similar test is also performed

82

0 5 10 15 20
Attribute bits flipped

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

sim
ila

rit
y

Color
Shape

(a) MLP

0.0 0.2 0.4 0.6 0.8 1.0
Attribute distance

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

sim
ila

rit
y

Color
Shape

(b) CNN

Original Shape

Color

Increasing attribute distance

0.08 0.24 0.38 0.56

0.12 0.25 0.44 0.71

(c) Distance along stimulus dimensions

Figure 5.4: Perceptual (network) similarity as a function of physical (attribute) distance. A test
stimulus is systematically altered along either its shape or color dimension. Network similarity
scores are computed between the original stimulus and its altered counterpart.

with color. Results are shown in Fig. 5.4(a) for 1 test stimulus. Clearly, the network is far more

sensitive to changes in shape than changes in color.

5.5 Experiment 2: Convolutional network trained on synthetic

objects

Our first experiment used highly simplified training stimuli for maximal experimental control. One

strength of modern neural network architectures is that they can learn effectively from data in

83

raw and complex forms, a fact we take advantage of in developing Experiment 2. Here we ask

whether similar learning-to-learn results can be achieved using synthetic object stimuli presented as

raw images. This setup presents a more challenging learning problem for the neural network, in

terms of making both 1st- and 2nd-order generalizations, since understanding shape requires making

abstractions that go substantially beyond separating a pool of input units that directly encode the

dimension, as in Experiment 1.

“zup”

“dax”

“wif”

“lug”

(a) (b)

Figure 5.5: Training stimuli for Experiment 2. (a) novel objects with various shapes and colors (the
first 3 input channels). (b) a few examples of textures that might be found in the 4th input channel.

The stimuli are constructed as follows. Each object is a 2D shape of a specified color placed

over white background (200× 200). Texture is represented in a fourth image channel, independent

of RGB space. This design choice was made to avoid an initial shape bias; with texture overlaid in

RGB, a randomly initialized network exhibits the shape bias. Furthermore, the participants in Smith

et al. (2002) physically touch each object during play, indicating that they have access to additional

non-visual information.

Examples of our objects are shown in Fig. 5.5. Object shapes are polygons of random order

(uniform 3-10) and randomly sampled vertices, with preference given to points near image bound-

aries in order to ensure visible-sized objects. Colors are generated to span the RGB vector space

with even separation. We use black and white textures from the Brodatz database (Brodatz, 1966)

84

for our texture categories. A holdout set of shapes, colors and textures is again retained for testing.

5x5 Convolution
(5 feature maps, L2 reg.)

5x5 Max Pooling

Fully-connected Layer
(25 units, L2 reg., Drop.=0.5)

5x5 Convolution
(5 feature maps, L2 reg.)

5x5 Max Pooling
Softmax Layer

Object
Name

Stimulus
(200x200x4)

*conv and fully-connected
layers use ReLU activation

Figure 5.6: Convolutional network architecture. The network receives 4-channel image stimuli and
is trained to label the object in the image with a category name that is based on shape.

We train a multi-layer convolutional neural network (CNN) (LeCun et al., 2015) consisting of

two convolution layers with five feature maps, each followed by a max pooling layer. A depiction of

this architecture is shown in Fig. 5.6. The last pooling layer is followed by a fully-connected layer

of 25 ReLU units, and the softmax layer again varies in size according to the number of categories.

Both the convolutional layers and the fully-connected layer use L2 regularization, the latter also

with dropout=0.5. Each object is randomly shifted around image space by a small offset (train and

test alike). Training details mimic the MLP, but with 400 epochs.

Results. The randomly initialized network makes 2nd-order selections with the following ratios:

shape 38%, color 42% and texture 20%. We trained the network using varying dataset sizes, as

with our MLP. Results are shown in Fig. 5.7. Similarly to the MLP, acquisition of the 1st-order

generalization requires less data than that of the 2nd-order, supporting the notion that learning the

training classes is a simpler task than forming higher-order generalizations. Using the same shape

bias threshold of 0.7 2nd-order score, we find a number of important transition points: N=32 &

85

K=3 (accuracy 0.74), N=8 & K=6 (accuracy 0.75), and N=4 & K=12 (accuracy 0.70). The CNN

is thus capable of learning a shape bias from as few as 6 examples of 8 categories, a significant feat

given the scale of the input. Notably, the network is able to learn this bias with much less data than

Colunga & Smith (2005) using a data form that is significantly more complex. The CNN of Ritter

et al. (2017) used roughly N=1000 & K=1200, and developed a shape bias of 0.68 on a shape and

color-only task. A key takeaway from our results is that, with concentrated training effort, it is

possible to learn this bias from much less data using high-dimensional color images.

Figure 5.7: CNN generalization results for shape bias training with various training set sizes. Results
show the average of 10 training runs. See Fig. 5.3 for details.

As in Experiment 1, we also parametrically manipulate the CNN’s input to analyze its sensitivity

to changes along different stimulus dimensions, using a CNN trained with N=30 & K=10. Distance

in shape space is quantified as the Modified Hausdorff Distance (Dubuisson & Jain, 1994) between

the shape pair, and in color space as the cosine similarity of the RGB vector pair. Beginning with

an exemplar object stimuli, we sample 50 secondary shapes and order them by their distance from

the exemplar. We then modify the shape of the exemplar parametrically by stepping along this list,

recording network similarities between the original and modified versions in each case. A mirroring

experiment is then performed with color; in each case, only 1 attribute is altered at a time. Results

are shown in Fig. 5.4(b) & 5.4(c). We find that, much like the MLP, our CNN shows a strong

sensitivity to shape but not color.

For the sake of comparison, in Experiment 2 we also trained our CNN to label objects with

86

Figure 5.8: CNN generalization results for color bias training with various training set sizes.
The network is trained to label objects with category names based on color. In this case, the
generalization tests evaluate the fraction of times that the color match is selected. Results in each
grid show the average of 10 training runs.

names organized by color. Our goal was to compare the required sample complexity for color bias

training with that of shape bias training, and to evaluate whether color bias development follows

a similar 2-step process. All dataset parameters mirrored those of shape training, except that the

object labels were aligned with the color attribute of each training image. Performance on the

generalization tests was measured as the fraction of trials for which the network selects the color

match. Results for CNN color bias training are shown in Fig. 5.8. Notably, the color-trained CNN

requires a smaller sample complexity to achieve 0.7 accuracy on the 2nd-order test, reaching a score

of 0.73 with N=2 & K=3. Furthermore, this network does not appear to follow the 2-step process

of bias development; results for 1st- and 2nd-order generalizations look near-identical to one another.

In order to identify a stimulus as a member of a particular color category, the network needs only to

find a single pixel of that color, a task that is much simpler than representing and identifying shape.

Representing color requires a simple 3D space. By learning to isolate and preserve this space in the

hidden layers, the network can easily generalize to novel colors, hence the early 2nd-order results.

We inspected the learned representations of both a shape-trained and a color-trained CNN,

trained with N=50 & K=18, by visualizing the first-layer convolution filters of each network (Fig.

5.9). As we would expect, filters of the shape-trained CNN look identical across R, G and B

channels, as this network needs no sensitivity to color. In contrast, filters of the color-trained CNN

87

R G B RGB R G B RGB

(a) Shape

R G B RGB R G B RGB

(b) Color

Figure 5.9: Visualizing RGB channels of learned first-layer convolution filters. (a) Filters from the
CNN trained with explicit shape bias training (N=50 & K=18). Each row corresponds to 1 of the
5 filters. The first 3 channels are shown in the ‘R’, ‘G’ and ‘B’ columns, respectively. These 3
channels are shown together in a 4th column, labeled ‘RGB’. (b) Filters from the CNN trained to
label objects with category names based on color. In both (a) and (b), only channels 1-3 of the 4 are
shown.

vary across channels, indicating that the network has learned a selectivity for color.

5.6 Experiment 3: The onset of vocabulary acceleration

Our previous experiments confirm that simple neural networks can develop the shape bias from a

relatively small number of categories and examples. It remains unclear, however, how the dynamics

of bias acquisition relate to the dynamics of word learning. Gershkoff-Stowe & Smith (2004) showed

that the development of the shape bias in toddlers predicts the onset of vocabulary acceleration

during early word learning, a phase that begins at ages 16-20 months. Studying 8 children during

regular lab sessions at 3-week intervals, the authors found that increasing attention to shape was

correlated with increasing rate of vocabulary acquisition in participants. Fig. 5.11(a) shows the

individual growth curves of vocabulary size and shape response for each child. The former variable

is measured as the cumulative number of nouns in the child’s vocabulary, and the latter as the

cumulative number of times that the child has selected the shape match in a shape bias task akin to

the 2nd-order test. Although the vocabulary curve shows cumulative nouns in whole, the authors

88

also recorded cumulative “count nouns" for each participant, a subset of nouns that is well organized

by shape. We focus on the statistics reported for count nouns, as this subset reflects the type of

vocabulary that is influenced by the shape bias.

The authors found a few interesting correlations: 1) a correlation between increase in cumulative

shape choices and increase in cumulative count nouns across sessions for an individual participant,

averaged over participants [average r = .75; p < .05 for each], and 2) a correlation between average

increase in shape choices over the whole experiment and average increase in count nouns, computed

across participants [r = .81; p < .05].

5x5 Convolution
(5 feature maps, L2 reg.)

5x5 Max Pooling

Fully-connected Layer
(25 units, L2 reg., Drop.=0.5)

5x5 Convolution
(5 feature maps, L2 reg.)

5x5 Max Pooling
Softmax Layer(s)

Stimulus
(200x200x4)

*conv and fully-connected
layers use ReLU activation

Object Name (shape)
Loss weight: 0.6

Color Name
Loss weight: 0.2

Texture Name
Loss weight: 0.2

Figure 5.10: CNN architecture for Experiment 3. The architecture mimics the original CNN of
Experiment 2, with the exception of the softmax layer. Here, there are 3 softmax layers (1 for each
shape, color and texture), each of which extends from the fully-connected layer.

Methods. Inspired by this study, we train a CNN using our raw image data with the goal of

evaluating related correlation metrics for our networks. The participants of Gershkoff-Stowe &

Smith (2004) were not explicitly trained for the shape bias like those of Smith et al. (2002); they

received natural experience in a home setting, which may have included some words organized by

attributes other than shape. Therefore, we train our CNN to simultaneously label the object’s name,

which correlates with shape, as well as its color and texture names. We use a modified version of

89

the CNN architecture from Section 5.5 with three softmax layers, one for each label dimension

(Fig. 5.10). Each softmax layer branches independently from the fully-connected layer and has

its own negative log-likelihood loss. The number of categories along each label dimension, and

the loss weight assigned to its softmax layer, are determined according to the natural statistics of

the early human lexicon (Samuelson & Smith, 1999).1 The chosen ratios are as follows: 60-20-

20 shape-color-texture names (36, 12 and 12 categories, respectively). Thus, the overall loss is

L = 0.6 · Lshape + 0.2 · Lcolor + 0.2 · Ltexture. We use 10 examples of each shape, and colors and

textures are assigned at random to each stimuli from their 12 categories. We keep a cumulative

count of the number of count nouns in the network’s vocabulary, defined as the number of shape

categories for which the network has achieved 80% or greater accuracy on the training set. We

also keep a cumulative count of shape choices the network makes in a 500-trial 2nd-order test. This

process is repeated with 20 networks, using a different random seed for each network.

Results. We inspect the “early” word learning period for our networks, defined as the period

in which the average vocabulary size across the 20 networks is less than or equal to 2/3 the total

number of count nouns. Beyond this period, which we find to include the first 30 training epochs,

the network’s learning begins to flatten. We divide this period into 10 “sessions,” evenly spaced by

3 epochs. The learning curves of our networks are shown in Fig. 5.11(b). We compute correlation

metrics for our networks that are analogous to those of the child study. Looking at increases across

the sessions of a single network (metric 1), we find an average correlation of r = .53 between

increase in cumulative shape choices and increase in cumulative count nouns [p < .05 for each].

Further, looking at average increases across the entire 10-session period for each network (metric

2), we find a correlation of r = 0.76 [p < .001] across the 20 networks.

These analyses confirm that the dynamics of shape bias acquisition and early word learning

show a considerable dependency on one another in our CNNs, a phenomenon that is mirrored in the

1Children are taught object, color and material names independently. Loss weighting provides a good analog to this
for CNN training. Assigning a weight of 0.6 to object name labeling mirrors presenting this type of name 60% of the
time in training.

90

early word learning of human children.

5.7 Discussion

Using a set of controlled synthetic experiments, our work provides novel insights about the envi-

ronmental conditions that enable learning-to-learn in neural networks. Building on the work of

Colunga & Smith (2005) and Ritter et al. (2017), Experiment 1 showed that simple neural networks

can learn a shape bias from stimuli presented as abstract bit patterns with as few as 3 examples of

4 categories. Experiment 2 showed that simple convolutional neural net architectures trained on

high-dimensional images can learn a shape bias with as few as 6 examples of 8 object categories.

Although Hierarchical Bayesian Models (HBMs) are often noted for their data efficiency, our results

indicate that neural networks can approach both HBMs (Kemp et al., 2007) and children (Smith

et al., 2002) in the amount of data required to develop a shape bias. Moreover, we show that the

complexity of the data (e.g., binary patterns vs. synthetic images) influences the dynamics of

learning, and that neural networks are a powerful tool for understanding these types of interactions.

The development of the shape bias in children is known to correlate with accelerated word

learning (Gershkoff-Stowe & Smith, 2004), a phenomenon that Experiment 3 confirmed can be

mirrored in neural networks. One implication of this finding is that it may be possible to train

large-scale image recognition models more efficiently after initializing these models with shape

bias training. In future work, we hope to investigate this hypothesis with ImageNet-scale DNNs,

using an initialization framework designed with the intuitions garnered here.

91

Vo
ca

bu
la

ry
 S

ize

Cu
m

ul
at

iv
e

Sh
ap

e
Ch

oi
ce

s
Session Session

(a) Children

SessionSession

Vo
ca

bu
la

ry
 S

ize

Cu
m

ul
at

iv
e

Sh
ap

e
Ch

oi
ce

s

(b) CNN

Figure 5.11: Learning curves for shape bias and vocabulary. (a) shows the learning curves of the 8
children participants from Gershkoff-Stowe & Smith (2004). Participants were studied over the
course of 5-8 lab sessions. Curves are shown for vocabulary size (left) and cumulative shape choices
(right). Here, vocabulary includes all noun types. (b) shows analogous plots for our CNNs. 8
networks are shown, randomly sampled from the total 20 for the sake of visibility. Here, vocabulary
is measured only for shape-based object names.

92

Chapter 6

Learning a smooth kernel regularizer for

convolutional neural networks

6.1 Preface

This chapter is based off of Feinman & Lake (2019) and is the second of two works studying learning-

to-learn and inductive bias acquisition in neural network models. The first work, presented in Chapter

5, studied inductive biases that arise naturally with existing architectures and algorithms. This

chapter presents a modification of the standard neural network toolkit that incorporates new priors

and new techniques for learning-to-learn. The learned weights of convolutional neural networks

(CNNs) trained on large datasets for object recognition contain a substantial amount of structure.

These representations have parallels to simple cells in the primary visual cortex, where receptive

fields are smooth and contain many regularities. Incorporating smoothness constraints over the

kernel weights of modern CNN architectures is a promising way to improve their sample complexity.

In this chapter, we propose a smooth kernel regularizer that encourages spatial correlations in

convolution kernel weights. The correlation parameters of this regularizer are learned from previous

93

experience, yielding a method with a hierarchical Bayesian interpretation. We show that our

correlated regularizer can help constrain models for visual recognition, improving over an L2

regularization baseline.

6.2 Introduction

Convolutional neural networks (CNNs) are powerful feed-forward architectures inspired by mam-

malian visual processing capable of learning complex visual representations from raw image data

(LeCun et al., 2015). These networks achieve human-level performance in some visual recognition

tasks; however, their performance often comes at the cost of hundreds or thousands of labelled

examples. In contrast, children can learn to recognize new concepts from just one or a few examples

(Bloom, 2000; F. Xu & Tenenbaum, 2007), evidencing the use of rich structural constraints (Lake

et al., 2017). By enforcing structure on neural networks to account for the regularities of visual

data, it may be possible to substantially reduce the number of training examples they need to

generalize. In this paper, we introduce a soft architectural constraint for CNNs that encourages

smooth, correlated structure on their convolution kernels through transfer learning. We see this

as an important step towards a general, off-the-shelf CNN regularizer that operates independently

of previous experience. We have released an open-source implementation of the experiments at

https://github.com/rfeinman/SK-regularization.

The basis for our constraint is the idea that the weights of a convolutional kernel should in

general be well-structured and smooth. The weight kernels of CNNs that have been trained on

the large-scale ImageNet object recognition task contain a substantial amount of structure. These

kernels have parallels to simple cells in primary visual cortex, where smooth receptive fields

implement bandpass oriented filters of various scale (Jones & Palmer, 1987).

The consistencies of visual receptive fields are explained by the regularities of image data.

Locations within the kernel window have parallels to locations in image space, and images are

94

https://github.com/rfeinman/SK-regularization

(a) VGG16 layer-1 kernels

(b) i.i.d. Gaussian (L2-reg) (c) correlated Gaussian (SK-reg)

Figure 6.1: Kernel priors for VGG16. The layer-1 convolution kernels of VGG16, shown in (a),
possess considerable correlation structure. An i.i.d. Gaussian prior that has been fit to the VGG
layer-1 kernels, samples from which are shown in (b), captures little of the structure in these
kernels. A correlated multivariate Gaussian prior, samples from which are shown in (c), captures
the correlation structure of these kernels well.

generally smooth (Li, 2009). Consequently, smooth, structured receptive fields are necessary to

capture important visual features like edges. In landmark work, Hubel & Wiesel (1962) discovered

edge-detecting features in the primary visual cortex of cat. Since then, the community has suc-

cessfully modeled receptive fields in early areas of mammalian visual cortex using Gabor kernels

(Jones & Palmer, 1987). These kernels are smooth and contain many spatial correlations. In later

stages of visual processing, locations of kernel space continue to parallel image space; however,

inputs to these kernels are visual features, such as edges. Like earlier layers, these layers also

benefit from smooth, structured kernels that capture correlations across the input space. Geisler et

al. (2001) showed that human contour perception–an important component of object recognition–is

well-explained by a model of edge co-occurrences, suggesting that correlated receptive fields are

useful in higher layers of processing as well.

Despite the clear advantages of structured receptive fields, constraints placed on the convolution

kernels of CNNs are typically chosen to be as general as possible, with neglect of this structure.

L2 regularization–the standard soft constraint applied to kernel weights, which is interpreted as

a zero-mean, independent identically distributed (i.i.d.) Gaussian prior–treats each weight as an

independent random variable, with no correlations between weights expected a priori. Fig. 6.1

95

shows the layer-1 convolutional kernels of VGG16, a ConvNet trained on the large-scale ImageNet

object recognition task (Simonyan & Zisserman, 2015). Fig. 6.1(b) shows some samples from an

i.i.d. Gaussian prior, the equivalent of L2 regularization. Clearly, this prior captures little of the

correlation structure possessed by the kernels.

A simple and logical extension of the i.i.d. Gaussian prior is a correlated multivariate Gaussian

prior, which is capable of capturing some of the covariance structure in the convolution kernels. Fig.

6.1(c) shows some samples from a correlated Gaussian prior that has been fit to the VGG16 kernels.

This prior provides a much better model of the kernel distribution. In this paper, we perform a

series of controlled CNN learning experiments using a smooth kernel regularizer–which we denote

“SK-reg"–based on a correlated Gaussian prior. The correlation parameters of this prior are obtained

by fitting a Gaussian to the learned kernels from previous experience. We compare SK-reg to

standard L2 regularization in two object recognition use cases: one with simple silhouette images,

and another with Tiny ImageNet natural images. In the condition of limited training data, SK-reg

yields improved generalization performance.

6.3 Background

Our goal in this paper is to introduce new a priori structure into CNN receptive fields to account for

the regularities of image data and help reduce the sample complexity of these models. Previous

methods from this literature often require a fixed model architecture that cannot be adjusted from

task to task. In contrast, our method enforces structure via a statistical prior over receptive field

weights, allowing for flexible architecture adaption to the task at hand. Nevertheless, in this section

we review the most common approaches to structured vision models.

A popular method to enforce structure on visual recognition models is to apply a fixed, pre-

specified representation. In computational vision, models of image recognition consist of a hierarchy

of transformations motivated by principles from neuroscience and signal processing (e.g., Serre

96

et al., 2007; Bruna & Mallat, 2013). These models are effective at extracting important statistical

features from natural images, and they have been shown to provide a useful image representation

for SVMs, logistic regression and other “shallow" classifiers when applied to recognition tasks

with limited training data. Unlike CNNs, the kernel parameters of these models are not learned by

gradient descent. As result, these features may not be well-adapted to the specific task at hand.

In machine learning, it is commonplace to use the features from CNNs trained on large object

recognition datasets as a generic image representation for novel vision tasks (Donahue et al., 2014;

Razavian et al., 2014). Due to the large variety of training examples that these CNNs receive, the

learned features of these networks provide an effective representation for a range of new recognition

tasks. Some meta-learning algorithms use a similar form of feature transfer, where a feature

representation is first learned via a series of classification episodes, each with a different support set

of classes (e.g., Vinyals et al., 2016). As with pre-specified feature models, the representations of

these feature transfer models are fixed for the new task; thus, performance on the new task may be

sub-optimal.

Beyond fixed feature representations, other approaches use a pre-trained CNN as an initialization

point for a new network, following with a fine-tuning phase where network weights are further

optimized for a new task via gradient descent (e.g., Girshick et al., 2014; Girshick, 2015). By

adapting the CNN representation to the new task, this approach often enables better performance

than fixed feature methods; however, when the scale of the required adaptation is large and the

training data is limited, fine-tuning can be difficult. Finn et al. (2017) proposed a modification

of the pre-train/fine-tune paradigm called model-agnostic meta-learning (MAML) that enables

flexible adaptation in the fine-tuning phase when the training data is limited. During pre-training (or

meta-learning), MAML optimizes for a representation that can be easily adapted to a new learning

task in a later phase. Although effective for many use cases, this approach is unlikely to generalize

well when the type of adaptation required differs significantly from the adaptations seen in the

meta-learning episodes. A shared concern for all pre-train/fine-tune methods is that they require a

97

fixed model architecture between the pre-train and fine-tune phases.

The objective of our method is distinct from those of fixed feature representations and pre-

train/fine-tune algorithms. In this paper, we study the structure in the learned parameters of vision

models, with the aim of extracting general structural principles that can be incorporated into

new models across a broad range of learning tasks. SK-reg serves as a parameter prior over the

convolution kernels of CNNs and has a theoretical foundation in Bayesian parameter estimation.

This approach facilitates a CNN architecture and representation that is adapted to the specific task at

hand, yet that possesses adequate structure to account for the regularities of image data. The SK-reg

prior is learned from previous experience, yielding an interpretation of our algorithm as a method

for hierarchical Bayesian inference.

Independently of our work, Atanov et al. (2019) developed the deep weight prior, an algorithm

to learn and apply a CNN kernel prior in a Bayesian framework. Unlike our prior, which is

parameterized by a simple multivariate Gaussian, the deep weight prior uses a sophisticated density

estimator parameterized by a neural network to model the learned kernels of previously-trained

CNNs. The application of this prior to new learning tasks requires variational inference with a

well-calibrated variational distribution. Our goal with SK-reg differs in that we aim to provide

an interpretable, generalizable prior for CNN weight kernels that can be applied to existing CNN

training algorithms with little modification.

6.4 Bayesian interpretation of regularization

From the perspective of Bayesian parameter estimation, the L2 regularization objective can be

interpreted as performing maximum a-posteriori inference over CNN parameters with a zero-mean,

i.i.d. Gaussian prior. Here, we review this connection, and we discuss the extension to SK-reg.

L2 regularization. Assume we have a dataset X = {x1, ..., xN} and Y = {y1, ..., yN}

consisting of N images xi and N class labels yi. Let θ define the parameters of the CNN that we

98

A) Train CNN
(repeat 20x)

B) Extract kernel
statistics

C) Apply SK-reg to
new task

kernel datasets per
conv layer

Gaussian fits per conv layer
(samples shown)

Conv1

Conv2

Conv3
!(0, Σ&)

!(0, Σ()

!(0, Σ))

fit Gaussian

fit Gaussian

fit Gaussian

SK(Σ&)

SK(Σ()

SK(Σ))

Image classes for A) Image classes for C)

Phase 1 Phase 2

Dataset 1: θ11:M-1

Dataset 2: θ21:M-1

Dataset 3: θ31:M-1

θ1M

θ2M

θ3M

Figure 6.2: SK-reg workflow. A) First, a CNN is trained repeatedly (20x) on an object recognition
task. B) Next, the learned parameters of each CNN are studied and statistics are extracted. For each
convolution layer, kernels from the multiple CNNs are consolidated, yielding a kernel dataset for
the layer. A multivariate Gaussian is fit to each kernel dataset. C) SK-reg is applied to a fresh CNN
trained on a new learning task with limited training data (possibly with a different architecture or
numbers of kernels), using the resulting Gaussians from each layer.

wish to estimate. The L2 regularization objective is stated as follows:

θ̃ = argmax
θ

log p(Y | θ;X)− λ ∗ θT θ. (6.1)

Here, the first term of our objective is our prediction accuracy (classification log-likelihood), and

the second term is our L2 regularization penalty.

From a Bayesian perspective, this objective can be thought of as finding the maximum a-

posteriori (MAP) estimate of the network parameter posterior p(θ | Y ;X) ∝ p(Y | θ;X) ∗ p(θ),

leading to the optimization problem

θ̃ = argmax
θ

log p(Y | θ;X) + log p(θ). (6.2)

To make the connection with L2 regularization, we assume a zero-mean, i.i.d Gaussian prior over

99

the parameters θ of a weight kernel, written as

p(θ) =
1

Z
exp

(
− 1

2σ2
θT θ

)
. (6.3)

With this prior, Eq. 6.2 becomes

θ̃ = argmax
θ

log p(Y | θ;X)− 1

2σ2
θT θ,

which is the L2 objective of Eq. 6.1, with λ = 1
2σ2 .

SK regularization. The key idea behind SK-reg is to extend the L2 Gaussian prior to include a

non-diagonal covariance matrix; i.e., to add correlation. In the case of SK-reg, the prior over kernel

weights θ of Eq. 6.3 becomes

p(θ) =
1

Z
exp

(
− 1

2
θTΣ−1θ

)
for some covariance matrix Σ, and the new objective is written

θ̃ = argmax
θ

log p(Y | θ;X)− λ ∗ θTΣ−1θ. (6.4)

Hierarchical Bayes. When Σ is learned from previous experience, SK-reg can be interpreted

as approximate inference in a hierarchical Bayesian model. The SK regularizer for a CNN with C

layers, Σ = {Σ1, . . . ,ΣC}, assumes a unique zero-mean Gaussian priorN (θi; 0,Σi) over the weight

kernels for each convolutional layer, θ = {θ1, . . . , θC}. Due to the regularities of the visual world,

it is plausible that effective general priors exist for each layer of visual processing. In this paper,

transfer learning is used to fit the prior covariances Σ from previous datasets X1:M−1 and Y 1:M−1,

which informs the solution for a new problem XM and Y M , yielding the hierarchical Bayesian

interpretation depicted in Fig. 6.3. Task-specific CNN parameters θ1:M are drawn from a common

100

Σ, and Σ has a hyperprior specified by β. Ideal inference would compute p(Y M |Y 1:M−1;X1:M),

marginalizing over θ1:M and Σ.

Level 3: Hyperprior

Level 2: Prior

Level 1: CNN parameters

!

"

#2#1 #3 #M…

Y1 | X1

" = {Σ1,…,ΣC}
= {θ1,…,θC}

Y2 | X2 Y3 | X3 YM | XM

Figure 6.3: A hierarchical Bayesian interpretation of SK-reg. A point estimate of prior parameters
Σ is first computed with MAP estimation. Next, this prior is applied to estimate CNN parameters
θj in a new task.

We propose a very simple empirical Bayes procedure for learning the kernel regularizer in Eq.

6.4 from data. First, M − 1 CNNs are fit independently to the datasets X1:M−1 and Y 1:M−1 using

standard methods, in this case optimizing Eq. 6.1 to get point estimates θ̃1:M−1. Second, a point

estimate Σ̃ is computed by maximizing p(Σ|θ̃1:M−1; β), which is a simple regularized covariance

estimator. Last, for a new task M with training data XM and Y M , a CNN with parameters θM is

trained with the SK-reg objective (Eq. 6.4), with Σ = Σ̃.

This procedure can be compared with the hierarchical Bayesian interpretation of MAML (Grant

et al., 2018). Unlike MAML, our method allows flexibility to use different architectures for different

datasets/episodes, and the optimizer for θM is run to convergence rather than just a few steps.

6.5 Experiments

We evaluate our approach within a set of controlled visual learning environments. SK-reg parameters

Σi for each convolution layer θi are determined by fitting a Gaussian to the kernels acquired from

an earlier learning phase. We divide our learning tasks into two unique phases, applying the same

101

CNN architecture in each case. We note that our approach does not require a fixed CNN architecture

across these two phases; the number of feature maps in each layer may be easily adjusted. A

depiction of the two learning phases is given in Fig. 6.2.

Phase 1. The goal of phase 1 is to extract general principles about the structure of learned

convolution kernels by training an array of CNNs and collecting statistics about the resulting kernels.

In this phase, we train a CNN architecture to classify objects using a sufficiently large training set

with numerous examples per object class. Training is repeated multiple times with unique random

seeds, and the learned convolution kernels are stored for each run. During this phase, standard

L2 regularization is applied to enforce a minimal constraint on each layer’s weights (optimization

problem of Eq. 6.1). After training, the convolution kernels from each run are consolidated, holding

each layer separate. A multivariate Gaussian is fit to the centered kernel dataset of each layer,

yielding a distributionN(0,Σi) for each convolution layer i. To ensure the stability of the covariance

estimators, we apply shrinkage to each covariance estimate, mixing the empirical covariance with

an identity matrix of equal dimensionality. This can be interpreted as a hyperprior p(Σ; β) (Fig. 6.3)

that favors small correlations. The optimal mixing parameter is determined via cross-validation.

Phase 2. In phase 2, we test the aptitude of SK-reg on a new visual recognition task, applying

the covariance matrices Σi obtained from phase 1 to regularize each convolution layer i in a freshly-

trained CNN (optimization problem of Eq. 6.4). In order to adequately test the generalization

capability of our algorithm, we use a new set of classes that differ from the phase 1 classes in

substantial ways, and we provide just a few training examples from each class. Performance of

SK-reg is compared against standard L2 regularization.

6.5.1 Silhouettes

As a preliminary use case, we train our network using the binary shape image dataset developed

at Brown University1, henceforth denoted “Silhouettes." Silhouette images are binary masks that

1The binary shape dataset is available in the “Databases" section at http://vision.lems.brown.edu

102

http://vision.lems.brown.edu

Figure 6.4: Exemplars of the phase 1 silhouette object classes.

Layer Window Stride Features λ

Input (200x200x3)
Conv2D 5x5 2 5 0.05
MaxPooling2D 3x3 3
Conv2D 5x5 1 10 0.05
MaxPooling2D 3x3 2
Conv2D 5x5 1 8 0.05
MaxPooling2D 3x3 1
FullyConnected 128 0.01
Softmax

Table 6.1: CNN architecture. Layer hyperparameters include window size, stride, feature count, and
regularization weight (λ). Dropout is applied after the last pooling layer and the fully-connected
layer with rates 0.2 and 0.5, respectively.

depict the structural form of various object classes. Simple shape-based stimuli such as these

provide a controlled learning environment for studying the inductive biases of CNNs (Feinman &

Lake, 2018). We select a set of 20 well-structured silhouette classes for phase 1, and a set of 10

unique, well-structured classes for phase 2 that differ from phase 1 in their consistency and form.

The images are padded to a fixed size of 200× 200.

During phase 1, we train our network to perform 20-way object classification. Exemplars of the

phase 1 classes are shown in Fig. 6.4. The number of examples varies for each class, ranging from

12 to 49 with a mean of 24. Class weighting is used to remedy class imbalances. To add complexity

to the silhouette images, colors are assigned randomly to each silhouette before training. During

training, random translations, rotations and horizontal flips are applied at each training epoch to

improve generalization performance.

103

(a) First-layer kernels

(b) Gaussian samples

Figure 6.5: Learned first-layer kernels vs. Gaussian samples. (a) depicts some of the learned
first-layer kernels acquired from phase 1 silhouette training. For comparison, (b) shows a few
samples from a multivariate Gaussian that was fit to the first-layer kernel dataset.

We use a CNN architecture with 3 convolution layers, each followed by a max pooling layer

(see Table 6.1). Hyperparameters including convolution window size, pool size, and filter counts

were selected via randomized grid-search, using a validation set with examples from each class to

score candidate values. A rectified linear unit (ReLU) nonlinearity is applied to the output of each

convolution layer, as well as to the fully-connected layer. The network is trained 20 times using the

Adam optimizer, each time with a unique random initialization. It achieves an average validation

accuracy of 97.7% across the 20 trials, indicating substantial generalization.

Following the completion of phase 1 training, a kernel dataset is obtained for each convolution

layer by consolidating the learned kernels for that layer from the 20 trials. Covariance matrices Σi

for each layer i are obtained by fitting a multivariate Gaussian to the layer’s kernel dataset. For

a first-layer convolution with window size K ×K, this Gaussian has dimensionality 3K2, equal

to the window area times RGB depth. We model the input channels as separate variables in layer

1 because these channels have a consistent interpretation as the RGB color channels of the input

image. For remaining convolution layers, where the interpretation of input channels may vary

from case to case, we treat each input channel as an independent sample from a Gaussian with

dimensionality K2. The kernel datasets for each layer are centered to ensure zero mean, typically

requiring only a small perturbation vector.

To ensure that our multivariate Gaussians model the kernel data well, we computed the cross-

104

validated log-likelihoods of this estimator on each layer’s kernel dataset and compared them to those

of an i.i.d. Gaussian estimator fit to the same data. The multivariate Gaussian achieved an average

score of 358.5, 413.3 and 828.1 for convolution layers 1, 2 and 3, respectively. In comparison, the

i.i.d. Gaussian achieved an average score of 144.4, 289.6 and 621.9 for the same layers. These

results confirm that our multivariate Gaussian provides an improved model of the kernel data. Some

examples of the first-layer convolution kernels are shown in Fig. 6.5 alongside samples from our

multivariate Gaussian that was fit to the first-layer kernel dataset. The samples appear structurally

consistent with our phase 1 kernels.

In phase 2, we train our CNN on a new 10-way classification task, providing the network with

just 3 examples per class for gradient descent training and 3 examples per class for validation.

Colors are again added at random to each silhouette in the dataset. The network is initialized

randomly, and we apply SK-reg to the convolution kernels of each layer during training using the

covariance matrices obtained in phase 1. Our validation set is used to track and save the best model

over the course of the training epochs (early stopping). A holdout set with 6 examples per class is

used to assess the final performance of the model. A depiction of the train, validation and test sets

used for phase 2 is given in Fig. 6.6. The validation and test images have been shifted, translated

and flipped to make for a more challenging generalization test. Similar to phase 1, random shifts,

rotations and horizontal flips are applied to the training images at each training epoch. As a baseline,

we also train our CNN using standard L2 regularization.

The regularization weight λ is an important hyperparameter of both SK and L2 regularization.

Before performing the phase 2 training assessment, we use a validated grid search to select the

optimal λ for each regularization method, applying our train/validate sets.2 The same weight λ is

applied to each convolution layer, as done in phase 1.

Results. With our optimal λ values selected, we trained our CNN on the 10-way phase 2

2To yield interpretable λ values that can be compared between the SK and L2 cases, we normalize each covariance
matrix to unit determinant by applying a scaling factor c, such that det(cΣ) = det(I).

105

Misk
arb
bottle

brick
carriage

dude
flatfish
hand
horse
textbox

ValidateTrain Test

Figure 6.6: Silhouettes phase 2 datasets. 3 examples per class are provided in both the train
and validation sets. A holdout test set with 6 examples per class is used to evaluate final model
performance.

classification task of Fig. 6.6, comparing SK regularization to a baseline L2 regularization model.

Average results for the two models collected over 10 training runs are presented in Table 6.2.

Average test accuracy is improved by roughly 55% with the addition of SK reg, a substantial

performance boost from 53.0% correct to 82.1% correct. Clearly, a priori structure is beneficial to

generalization in this use case. An inspection of the learned kernels confirms that SK-reg encourages

the structure we expect; these kernels look visually similar to samples from the Gaussian (e.g. Fig.

6.5).

106

Method λ Cross-entropy Accuracy
L2 0.214 2.000 (+/- 0.033) 0.530 (+/- 0.013)
SK 0.129 0.597 (+/- 0.172) 0.821 (+/- 0.056)

Table 6.2: Silhouettes phase 2 results. For each regularization method, the optimal regularization
weight λ was selected via grid-search. Results show the average cross-entropy and classification
accuracy achieved on the holdout test set over 10 phase 2 training runs.

6.5.2 Tiny ImageNet

Our silhouette experiment demonstrates the effectiveness of SK-reg when the parameters of the

regularizer are determined from the structure of CNNs trained on a similar image domain. However,

it remains unclear whether these regularization parameters can generalize to novel image domains.

Due to the nature of the silhouette images, the silhouette recognition task encourages representations

with properties that are desirable for object recognition tasks in general. Categorizing silhouettes

requires forming a rich representation of shape, and shape perception is critical to object recognition.

Therefore, this family of representation may be useful in a variety of object recognition tasks.

To test whether our kernel priors obtained from silhouette training generalize to a novel domain,

we applied SK-reg to a simplified version of the Tiny ImageNet visual recognition challenge,

using covariance parameters fitted to silhouette-trained CNNs. Tiny ImageNet images were up-

sampled with bilinear interpolation from their original size of 64× 64 to mirror the Silhouette size

200× 200. We selected 10 well-structured ImageNet classes that contain properties consistent with

the silhouette images.3 We performed 10-way image classification with these classes, using the

same CNN architecture from Table 6.1 and applying the SK-reg soft constraint. The network is

provided 10 images per class for training and 10 per class for validation. Because of the increased

complexity of the Tiny ImageNet data, a larger number of examples per class is merited to achieve

good generalization performance. A holdout test set with 20 images per class is used to evaluate

performance. Fig. 6.7 shows a breakdown of the train, validate and test sets.

3Desirable classes have a uniform, centralized object with consistent shape properties and a distinct background.

107

Method λ Cross-entropy Accuracy
L2 0.450 1.073 (+/- 0.102) 0.700 (+/- 0.030)
SK 0.450 0.956 (+/- 0.180) 0.776 (+/- 0.035)

Table 6.3: Tiny ImageNet SK-reg and L2 results. Table shows the average cross-entropy and
classification accuracy achieved on the holdout test set over 10 training runs.

A few modifications were made to account for the new image data. First, we modified the phase

1 silhouette training used to acquire our covariance parameters, this time applying random colors

to both the foreground and background of each silhouette. Previously, each silhouette overlaid a

strictly white background. Consequently, the edge detectors of the learned CNNs would be unlikely

to generalize to novel color gradients. Second, we added additional regularization to our covariance

estimators to avoid over-fitting and help improve the generalization capability of the resulting kernel

priors. Due to the nature of the phase 2 task in this experiment, and the extent to which the images

differ from phase 1, additional regularization was necessary to ensure that our kernel priors could

generalize. Specifically, we applied L1-regularized inverse covariance estimation (Friedman et al.,

2008) to estimate each Σi, which can be interpreted as a hyperprior p(Σ; β) (Fig. 6.3) that favors a

sparse inverse covariance (Lake & Tenenbaum, 2010).

Similar to the silhouettes experiment, the validation set is used to select weighting hyperparame-

ter λ and to track the best model over the course of learning. As a baseline, we again compared

SK-reg to a λ-optimized L2 regularizer.

Results. SK-reg improved the average holdout performance received from 10 training runs as

compared to an L2 baseline, both in accuracy and cross-entropy. Results for each regularization

method, as well as their optimal λ values, are reported in Table 6.3. An improvement of 8% in

test accuracy suggests that some of the structure captured by our kernel prior is useful even in a

very distinct image domain. The complexity of natural images like ImageNet is vast in comparison

to simple binary shape masks; nonetheless, our prior from phase 1 silhouette training is able to

influence ImageNet learning in a manner that is beneficial to generalization.

108

black widow

brain coral

dugong

monarch

beach wagon

bullet train

obelisk

trolleybus

pizza

espresso

ValidateTrain Test
…
…
…
…

…
…

…
…

…
…

…
…
…
…

…
…
…
…

…
…

…
…
…
…

…
…
…
…

…
…

Figure 6.7: Tiny ImageNet datasets. 10 classes were selected to form a 10-way classification task.
The train and validate sets each contain 10 examples per class. The holdout test set contains 20
examples per class.

6.6 Discussion

Using a set of controlled visual learning experiments, our work in this paper demonstrates the

potential of structured receptive field priors in CNN learning tasks. Due to the properties of image

data, smooth, structured receptive fields have many desirable properties for visual recognition

models. In our experiments, we have shown that a simple multivariate Gaussian model can

effectively capture some of the structure in the learned receptive fields of CNNs trained on simple

object recognition tasks. Samples from the fitted Gaussians are visually consistent with learned

receptive fields, and when applied as a model prior for new learning tasks, these Gaussians can help

a CNN generalize in conditions of limited training data. We demonstrated our new regularization

method in two simple use cases. Our silhouettes experiment shows that, when the parameters of

109

SK-reg are determined from CNNs trained on a similar image domain to that of the new task, the

performance increase that results in the new task can be quite substantial–as large as 55% over

an L2 baseline. Our Tiny ImageNet experiment demonstrates that SK-reg is capable of encoding

generalizable structural principles about the correlations in receptive fields; the statistics of learned

parameters in one domain can be useful in a completely new domain with substantial differences.

The Gaussians that we fit to kernel data in phase 1 of our experiments could be overfit to the

CNN training runs. We have discussed the application of sparse inverse covariance (precision)

estimation as one approach to reduce over-fitting. In future work, we would like to explore a

Gaussian model with graphical connectivity that is specified by a 2D grid MRF. Model fitting would

consist of optimizing the non-zero precision matrix values subject to this pre-specified sparsity.

The grid MRF model is enticing for its potential to serve as a general “smoothness" prior for CNN

receptive fields. Ultimately, we hope to develop a general-purpose kernel regularizer that does not

depend on transfer learning.

Although a Gaussian can model some kernel families sufficiently, other families would give it

a difficult time. The first-layer kernels of AlexNet–which are 11× 11 and are visually similar to

Gabor wavelets and derivative kernels–are not well-modeled by a multivariate Gaussian. A more

sophisticated prior is needed to model kernels of this size effectively. In future work, we hope to

investigate more complex families of priors that can capture the regularities of filters such as Gabors

and derivatives. Nevertheless, a simple Gaussian estimator works well for smaller kernels, and in

the literature, it has been shown that architectures with a hierarchy of smaller convolutions followed

by nonlinearities can achieve equal (and often better) performance as those will fewer, larger kernels

(Simonyan & Zisserman, 2015). Thus, the ready-made Gaussian regularizer we introduced here can

be used in many applications.

110

Chapter 7

Conclusion and future directions

Human conceptual knowledge supports a variety of unique capabilities spanning perception, pro-

duction and reasoning. The form of this knowledge is of great interest to cognitive scientists. One

tradition has emphasized structured knowledge (Section 1.1), viewing concepts as embedded in

intuitive theories or as organized by symbolic representations such as trees, grammars and programs.

A second tradition has emphasized statistical knowledge (Section 1.2), viewing concepts as em-

bodiments of patterns and correlations from observed data and as exemplified by training neural

network models. Each of these traditions alone provides an incomplete account of human behavior,

although their strengths are complementary.

This thesis presents a new synthesis of ideas from the structured and statistical traditions that

helps understand and account for human concept learning. We have proposed a new framework for

computational models of conceptual knowledge called Generative Neuro-Symbolic (GNS) Modeling

and demonstrated how this framework can account for human behavior in a variety of concept

learning tasks. GNS models represent concepts as probabilistic programs with neural network

subroutines, leveraging the strengths of both structured symbolic representation and nonparametric

statistical estimation. The control flow of a probabilistic program, coupled with symbolic primitives

111

and renderers, provides an explicit representation of the causal and compositional processes by

which concepts are formed. This type of representation helps explain how concepts are applied

flexibly to a variety of tasks, overcoming a shortcoming of purely-statistical approaches. In addition,

by using neural networks to represent program subroutines, GNS is able to capture complex

correlations and account for behaviors that are not well-explained by fully symbolic models.

Chapter 2 presents a first case study of GNS modeling designed to systematically evaluate the

computational ingredients of the framework. In the study, we developed a generative model to

account for the ways that people generate handwritten character concepts. Using likelihood of

real human-drawn characters to measure the behavioral account of the model, we showed that our

GNS model outperforms two alternative models with more generic neural network architectures.

One of these alternatives, the Hierarchical LSTM (H-LSTM), retains an explicit notion of parts but

uses a less constrained form of memory to propagate information and model statistical correlations

between parts. The improvement of GNS over H-LSTM suggests that intermediate symbolic

rendering and controlled canvas memory are valuable ingredients for models of human concepts.

Unlike the fully-symbolic Bayesian Program Learning (BPL) model, our GNS model generates

new characters that exhibit complex correlations and that appear stylistically consistent with human

examples, evidencing the effectiveness of neural network submodules.

Chapter 3 builds on the work of Chapter 2 and develops a full hierarchical model of character

concepts, as well as techniques to perform probabilistic inference with the model. Whereas Chapter

2 focused on the forward generative model in isolation, aiming to evaluate the GNS architecture in

a controlled setting, Chapter 3 demonstrates how the generative model can be used to perform four

unique concept learning tasks that people grapple with ease. By performing a variety of unique tasks

with a single model, we provided an account for the task-generality of human concepts in ways

that previous work has fallen short. In addition, our experiments in this chapter offer an account

of how people generate new concepts and new exemplars that are novel yet structurally consistent

with familiar ones. This human capability has been demonstrated in a number of different creative

112

domains (Ward, 1994; Jongejan et al., 2016), and yet it has presented a challenge for computational

models (Lake et al., 2019). The GNS model produces new characters that are consistent with human

generations, yet that are sufficiently dissimilar from their nearest training example. Lastly, our

experiments in Chapter 3 demonstrate the importance of symbolic machinery to understanding

and reproducing the ways that people quickly grasp new concepts and use them in a variety of

tasks. Our GNS model relies on symbolic notions of pen actions (splines, stroke breaks, etc.) and

a symbolic rendering engine to capture the latent causal process by which characters are formed.

As demonstrated, this machinery provides clear improvements over alternative models that operate

directly on image pixels.

Some of the evaluations used in Chapters 2 and 3 were qualitative; in particular the evaluations

of new concepts and new examples generated by the model. These experiments would benefit

from a series of visual Turing tests (Lake et al., 2015) that would further quantify the behavioral

account of the model. Conducting these Turing tests is a primary interest for future work. In

addition, comparisons with the fully-symbolic Bayesian Program Learning (BPL) model (Lake

et al., 2015)—our most powerful benchmark and the only that performs a diversity of Omniglot

tasks—are mostly qualitative and could benefit from further development. The BPL model does not

provide a means to compute the marginal likelihood of a character, neither in its image or drawing

form. This makes direct comparisons difficult, but further design could produce more thoughtful

ways to compare the two models.

Alphabetical characters are only one of the many types of concepts that people encounter, and in

Chapter 4, we showed how to extend the GNS framework to model a new class of human concepts

with some distinguishing qualities. These concepts, dubbed “alien figures," have much richer

intra-class variability, with tokens that can vary along a number of different attribute dimensions.

We handled this change by shifting up one level in the generative hierarchy, using GNS to model

different tokens of an individual concept. We showed that our GNS model can account for the

ways that people quickly learn and generalize new alien figure concepts that embody different

113

types of composition ranging from fixed part structure to abstract relational rules. Compared

to a fully-symbolic Bayesian model with strong domain knowledge, our GNS model provides a

considerable improvement in likelihood of human few-shot learning behavior, and it provides an

improved account of two salient inductive biases that human participants exhibit.

Although the current GNS model of alien figures is an important step, it relies on the Bayesian

model and other synthetic generators for training data, and as result, it may include some of the

same biases and shortcomings of these parametric distributions. In future work, we would like to

scale up the human experiment to provide enough training data such that we can learn a GNS model

more directly from human behavior. The current dataset includes only 155 trials in total, which is

insufficient to train the neural network modules considered in this thesis. With a larger experiment

and sufficient data to train on human data alone, we believe that GNS’s behavioral account will

strengthen even farther beyond the current benchmarks.

The architecture of generative neuro-symbolic (GNS) modeling imposes a powerful inductive

bias over statistical neural network models by building in causal generative modeling and com-

positional representation. We see this framework as the most promising direction toward models

that explain the dual structural and statistical characteristics of human concepts; however, it is not

the only way to integrate inductive biases and neural networks. Chapters 5 and 6 explore other

ways that inductive biases can be learned by and imposed upon neural network models, focusing on

weaker inductive biases such as a preference to organize objects by shape and a smoothness prior.

These experiments demonstrate how, with only minimal modifications, existing neural network

toolkits can account for results from developmental psychology and can learn-to-learn new concepts

in a more efficient manner. Although valuable as a complement, these experiments are secondary to

the central focus and contribution of the thesis.

One general take-away from our work on GNS models is that causal generative models provide

an effective means to understand and model the mind and brain. A number of human behavioral

studies have suggested that people’s generative knowledge influences the way they perceive and

114

interact with concepts. In a seminal work, Freyd (1983) showed that the way that people learn to

draw character symbols influences subsequent recognition and categorization of the same symbols.

Tse & Cavanagh (2000) further uncovered that prior production knowledge influences apparent

motion when characters are presented stroke-by-stroke to human participants, and that the signal

is strong enough to override perceptual grouping cues. Generative neuro-symbolic (GNS) models

provide an effective means to understand these phenomenon in computational terms.

In addition to the behavioral evidence for generative models, neuroimaging studies have con-

firmed that a sensorimotor network is engaged upon the presentation of character stimuli (Longcamp

et al., 2003b; James & Gauthier, 2006), offering further support for the role of generative production

knowledge in the brain. A premotor area in the left dorsal precentral gyrus that is activated during

handwriting, located roughly at the hand region of motor cortex, is also activated upon viewing

characters. In addition, the character region of ventral visual stream is activated when participants

write characters from memory with no visual stimulus. Researchers at Indiana University have

found neuroimaging evidence that the functional specialization for characters may result from

people’s experience drawing characters, and that these circuits are representing a synthesis of visual

information and stored production knowledge (James & Atwood, 2009; James, 2010). Together,

these results suggest that generative models provide a promising means to understand and model

the brain.

Another important take-away from GNS modeling is that human concepts are well-explained

as including a synthesis of structural and statistical representation. Models from tradition 1 and

tradition 2 emphasize only one of these two ingredients, and each has fallen short in accounting for

components of human concept learning. Our experiments with GNS modeling improve over prior

work from the two traditions and provide preliminary evidence that human concepts include both

structural and statistical ingredients.

There are two important ways that our work on generative neuro-symbolic (GNS) models can be

expanded to provide a more comprehensive account of human concepts. First, the generality of the

115

framework can be further supported with additional experiments that add breadth to our applications.

Human concept learning is distinguished for having both a breadth and depth of applications

(Murphy, 2002; Lake et al., 2019), and although our current results are a start, the experiments are

limited to just two conceptual domains. We have designed the framework around general principles

of concepts—namely, that concepts are composed of reusable parts and relations—and we see

many new domains to which these ideas can extend. Second, the ability of GNS models to handle

real-world complexity could be supported through further experiments. People learn new concepts

directly from raw, high-dimensional sensory data, and they identify instances of known concepts

embedded in similarly complex stimuli. Our current experiments are limited to simple concepts

composed of only basic lines and shapes. In future work, we’d like to scale the framework up and

develop GNS models of concepts with more real-world complexity, such as objects embedded in

natural images or in 3D representations.

The remainder of this chapter explores ongoing and future directions that address the two

interests of the preceding paragraph. The intention of these directions is to help demonstrate the

broad range of concepts that GNS models can capture and provide an avenue toward modeling object

concepts with real-world complexity. Some of these directions include preliminary experiments;

however, this research is unpublished and not yet complete enough for submission. Section 7.1

presents preliminary experiments with structured block concepts that embody physical properties

and abstract symbolic relations. Section 7.2 demonstrates that GNS can account for simplified

renditions of real-world object concepts such as ice cream, house and building. Finally, Section

7.3 presents a proposal for a GNS model of 3D objects embedded in raw, high-dimensional stimuli.

This final section is a future direction, as there are no experiments to discuss at the current time.

116

CNN MLPcanvas

Figure 7.1: Neural network architecture of GNS subroutine GeneratePart for structured blocks
concepts. The network first reads the current canvas (partial object) as a 3D voxel image and
processes it with a 3D convolutional neural network (CNN) to form a hidden representation. This
hidden layer is then fed to a multi-layer perceptron (MLP), followed by a mixture density output
head (Graves, 2013) that predicts a distribution for the next part location li ∈ R3.

7.1 GNS model of structured blocks concepts

As another proof-of-concept of generative neuro-symbolic (GNS) modeling, we evaluated whether

GNS models can represent two types of synthetic concepts that require reasoning about physical

properties. In this domain, stimuli are 3D voxel images composed by stacking basic cube blocks

with uniform shape and size to form various compound shapes. We endow the model with a simple

part generator that generates the ith part by specifying a location li ∈ R3. The part generator,

depicted in Fig. 7.1, uses a mixture density network (Graves, 2013) similar to those from Chapters

2 & 3. The network outputs a distribution for li, and it is trained to maximize the log-likelihood of

true part locations provided with the training data. We tested whether a GNS model could learn

to represent highly structured physical concepts and relations using only this highly generalized,

real-valued part representation. Importantly, stimuli in this experiment are represented as 3D voxel

images, compared to the standard 2D color images used in previous chapters.

7.1.1 Parabolas

We first evaluated the GNS model on simple parabola stimuli formed from 5 blocks each (Fig.

7.2(a)). This first experiment tests whether GNS can learn to represent a structured physical concept

117

Model samplesData (ground truth)

(a) Data

Model samplesData (ground truth)

(b) Model samples (c) Generating part-by-part

Figure 7.2: Learning to generate parabola concepts. (a) A collection of real examples from the
parabola dataset. (b) A collection of examples from the GNS model trained to generate parabolas.
(c) The GNS model generates new examples of parabolas part-by-part, visualized with a sequential
sample tree.

that manifests as relationships between multiple parts of a compound object. In each stimuli, the

relative location of block parts is dictated by a U-shaped parabola. Across the 5 parts, one location

dimension, z, remains constant, while the other two dimensions relate to each other by the formula

y = a · x2. The scalar a is sampled independently for each stimuli from a mean-centered normal

distribution, a ∼ N (0, σ2). To successfully model these concepts, GNS must reason about the

abstract mathematical formula that dictates the relationship between spatial locations of different

block parts.

After training, the GNS model successfully generates new examples of parabolas, producing

stimuli that are indistinguishable from real data to the eye (Fig. 7.2(b)). These results suggest that

the model has learned to represent the symbolic relationship that governs different parts of the

stimuli. Another view into the resulting model is provided by visualizing the part-by-part sample

generation process (Fig. 7.2(c)).

In addition to producing high-fidelity samples of whole objects, the uncertainty of the GNS

model at different phases of sample generation—conveyed by the variability of next-part samples

for different partial canvases (Fig. 7.3)—matches with our intuition about the parabola domain. At

118

next-part sample

current canvas (condition)condition

sample

Figure 7.3: Next-part samples from the GNS model of parabola concepts. For each of 5 different
partial-object canvases (rows), the model produces 5 unique samples of the next part (columns).

early phases of the sample, such as rows 1-3 of Fig. 7.3 where the canvas has only 0-2 previous

parts, the model shows a high level of uncertainty about the next, conveyed by notable variance

between its next-part samples. As we get further into the sample and the parabola becomes more

clear, the model begins to collapse on a more confident and uniform prediction about the next part.

7.1.2 Parallel towers

This experiment tests whether GNS can learn a unique class of concepts with rigid and discrete

structure that we denote parallel towers (Fig. 7.4(a)). Each stimuli consists of two block towers,

and every block is connected to one of the two discrete towers. Moreover, towers are organized

either vertically or horizontally, and the choice of orientation must match between the two towers.

Understanding the parallel towers concepts requires reasoning about the concept two: every part

119

Model samples

Data

(a) Data

Model samples

Data

(b) Model samples (c) Generating part-by-part

Figure 7.4: Learning to generate parallel towers concepts. (a) A collection of real examples from the
parallel towers dataset. (b) A collection of examples from the GNS model trained to generate parallel
towers. (c) The GNS model generates new examples of parallel towers part-by-part, visualized with
a sequential sample tree.

must be connected to one of two discrete towers, and there must always be two (i.e., there must

always be at least one block in each of two disconnected locations). In addition, it requires reasoning

about discrete orientations: each stimuli has either a vertical or horizontal orientation, and both of

the two block towers must match this orientation.

The architecture of GeneratePart is the same as for parabolas (Fig. 7.1) with one modifi-

cation: for this domain, since concepts can have a variable number of parts, we add a termination

predictor as an additional output head to the neural network. By predicting yes-or-no whether to

continue with another part at each step, the model implicitly specifies a number of parts for the

object.

Fig. 7.4(b) shows some examples of new parallel towers stimuli generated by the GNS model

after training. The model successfully generates from the concept, producing stimuli that always

contain two disconnected towers and that have either vertical or horizontal orientation. Moreover, the

statistics of part count, and of horizontal-vs-vertical orientation, match closely with the parameters

of the real data. Fig. 7.5 visualizes the GNS model’s part-by-part generation of parallel towers

stimuli with a sample tree diagram.

120

next-part sample

current canvas (condition)condition

sample

Figure 7.5: Next-part samples from the GNS model of parallel towers concepts. For each of 6
different partial-object canvases (rows), the model produces 4 unique samples of the next part
(columns).

Much like with parabola concepts, the variability of GNS next-part samples for parallel towers

concepts (Fig. 7.5) matches with our intuition about the uncertainty at different points of the

generation process. When the first tower contains only a single part (row 2), the model is confident

that the next part will go to the same tower, because it is unlikely to see a one-part tower. However,

once the first tower has two parts (row 3), the model is 50/50 about whether the next part will start a

new tower vs. add to the existing one.

121

7.2 GNS model of 2D objectsGNS model architecture

attribute i

canvas

(partial object)

RNN

CNN

FC

(a)

(b)

(d)

(c)

(a) input layer; shared

(b) recurrent layer; shared

(c) output layer; per-attribute

(d) embedding layer; per-attribute

Figure 7.6: Neural network architecture of the GNS subroutine GeneratePart for 2D object
concepts.

In addition to the structured block concepts discussed above, we also evaluated the GNS

modeling framework for its ability to represent real-world objects. Our ultimate goal for GNS is

to model object stimuli embedded in raw, high-dimensional data such as they occur in the natural

world. Section 7.3 presents a proposal for how to achieve this vision using datasets with real-world

complexity. In this section, we take a first step forward using simplified renditions of real-world

object concepts including ice cream, houses, and buildings. Stimuli are 2D approximations of

objects’ real 3D form, constructed from a dictionary of basic polygon shapes that can vary in size

and aspect ratio. An ice cream cone, for example, is composed of a single triangle and 1-2 ellipses,

each with dimensions that can vary (Fig. 7.7(a)).

To generate instances of these 2D object concepts, we endow the model with a neural network

part generator that samples a few basic attributes to specify the next part: 1) the primitive shape of

122

the part, 2) the color of the part, 3) its 2D location, and 4) its 2D size. These attributes are sampled

in an autoregressive sequence using a recurrent neural network (Fig. 7.6). For part i, the generator

first samples a categorical primitive ID, pi, from a dictionary of 4 basic primitive polygons. It then

samples a categorical color ID, ci, that assigns a color from a dictionary of 14 basic colors. Finally,

it samples a 2D location li ∈ R2 and a 2D size si ∈ R2 that specify the center and size of the part’s

outer bounding box in both x and y dimensions. The network outputs a distribution for each of

these attributes, and it is trained to maximize the log-likelihood of true attribute labels provided

with the training data for each category.

7.2.1 Ice cream Model samplesReal data

Next-part model samples

sample

condition

(a) Data

Model samplesReal data

Next-part model samples

sample

condition

(b) Model samples

Figure 7.7: Ice cream concept. (a) A collection of real examples from the ice cream dataset. (b) An
equal-size collection of examples from the GNS model trained to generate ice creams.

We first evaluated the GNS model for its ability to represent a 2D ice cream concept (Fig. 7.7(a)).

123

Stimuli are composed of 2-3 parts: a single cone part that manifests as a triangle, and 1-2 scoop

parts that each manifest as ellipses. To successfully model these concepts, GNS must learn about

the occurrence frequencies and relative placements of each part category. Placing each scoop so

that it sits just atop the previous cone or scoop requires jointly reasoning about both location and

size for the part.

Some examples of new ice cream stimuli generated by the GNS model after training are shown

in Fig. 7.7(b). The trained GNS model successfully generates new examples of ice cream cones,

producing stimuli that are mostly indistinguishable from real data to the eye (Fig. 7.7(b)). Moreover,

the statistics of cones and scoops are a strong match with the real data provided in training. In

addition, the uncertainty of the GNS model at different steps of generation—conveyed by the

variability of next-part samples for different partial canvases (Fig. 7.8)—matches with our intuition

about this domain.

Model samplesReal data

Next-part model samples

sample

condition

Figure 7.8: Next-part samples from the GNS model of ice cream concepts. For each of 3 different
partial-object canvases (rows), the model produces 6 unique samples of the next part (columns).

7.2.2 House

Our second 2D object evaluation uses of a simple house concept (Fig. 7.9(a)). Each object is a

house with exactly 3 parts: a core (rectangle), a roof (triangle) and a chimney (rectangle). This

124

Model samplesReal data

Next-part model samples

(a) Data

Model samplesReal data

Next-part model samples

(b) Model samples

Figure 7.9: House concept. (a) A collection of real examples from the house dataset. (b) An
equal-size collection of examples from the GNS model trained to generate houses.

concept is the first of two building-related stimuli categories, and for starters we begin with very

basic statistics that have little variability. The location and size of the core and the roof parts vary

only slightly via a low-variance normal distribution. The location of the chimney has the largest

variance, as it can appear at any x position along the roof.

Fig. 7.9(b) shows some examples of new house stimuli generated by the GNS model after the

completion of training. In all examples, the model correctly generates one each of the three part

categories and places them in their correct relative location such that all parts connect. Moreover,

the model correctly matches the low variance of the core and roof parts seen in real data: the sizes

and locations of these parts is relatively constant with only minor variability. Importantly, the model

correctly matches the statistics of the “chimney" part, placing this part on either the left or right side

of the roof and adding small variations on either side.

125

Model samplesReal data

Next-part model samples

sample

condition

Figure 7.10: Next-part samples from the GNS model of house concepts. For each of 3 different
partial-object canvases (rows), the model produces 6 unique samples of the next part (columns).

7.2.3 Building

Our third 2D object concept expands on the previous house with a more general building concept

with richer variation (Fig. 7.11(a)). Like house, each building example has a core part, and some

buildings also have a roof. Buildings, however, have a few additional variations that make for a

richer class of stimuli. Each has an additional landscape part, which is a rectangle that takes one of

two colors. Importantly, the core part of the building concept varies much more in size compared to

house. There is an additional window part, and the number of windows present correlates with the

size of the building core.

Fig. 7.11(b) shows some examples of new building stimuli generated by the GNS model after

training. The model produces new examples that are near-indistinguishable from real data and that

would likely pass a visual Turing test (Lake et al., 2015). Like the real data, each generated stimuli

contains all of the required part categories: landscape, core, window, and (sometimes) roof. The

landscape part is either blue or green with approximately 50% probability as per ground truth, as

is the occurrence of a “roof" part. Importantly, the number of window rows and columns, which

are each sampled between 1-3 in the real data, contains analogous statistics in the generated data.

126

Model samples

Real data
sample

condition

(a) Data

Model samples

Real data
sample

condition

(b) Model samples

Figure 7.11: Building concept. (a) A collection of real examples from the building dataset. (b) An
equal-size collection of examples from the GNS model trained to generate buildings.

Moreover, the x and y sizes of the “core" part is correctly correlated with the number of window

rows and columns in each generation.

7.3 Proposal: GNS model of 3D objects

The GNS modeling framework is designed to capture inductive biases for concept learning that

generalize across different kinds of visual concepts. This same framework can potentially be used

to model 3D object concepts, such chairs, vehicles and other categories from the ShapeNet library

(Chang et al., 2015), again with a neuro-symbolic generative process for parts and relations. Here,

we briefly review the path forward for training GNS models of 3D object concepts.

Everyday objects have more intra-class variability compared to the handwritten characters

discussed in Chapters 2 & 3; for example, different chair tokens vary in the number of arm rests,

127

Model samples

Real data
sample

condition

Figure 7.12: Next-part samples from the GNS model of building concepts. For each of 6 different
partial-object canvases (rows), the model produces 7 unique samples of the next part (columns).

legs, and etc. much as different character types vary in their parts, although both domains are

characterized by similar structural and statistical considerations. A similar case was evident with

the alien figure concepts studied in Chapter 4. As done for alien figures, we again shift up one

level in the generative hierarchy and design a token-level model for generating new exemplars

of an individual concept (chairs, cars, etc.) that mirrors our type-level model for characters. The

architecture and sampling procedure of a proposed GNS model for 3D object tokens is given in Fig.

7.13. As with characters, our object model produces samples one part at a time, using a 3D canvas C

in place of the previous 2D canvas. The procedure GeneratePart consists of two neural network

components: 1) a discriminitively-trained category model p(k | C) that predicts the category label

k of the next part given the current canvas (leg, arm, back, etc.), and 2) a generative instance model

p(x | k, C) that is trained with a variational autoencoder objective to sample an instance of the

128

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

procedure GENERATETOKEN
C 0 . Initialize blank 3d canvas
while true do

xi GENERATEPART(C) . Sample part from neural net
C fupdate(xi, C) . Update 3d canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
✓ {, x1:}
return . Return concept token

1

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

category model p(k |C)

instance model p(x |k, C)

C
p(k ∣ C)

C

q(z ∣ x, k, C)

zk

p(x |z)

x

p

k

Ck

p(z |k, C)

x

generate token

se
at

leg
s ba
ck

re
st

Figure 7.13: A proposed GNS model for the 3D object concept “chair."

next part x given the current canvas and predicted part category label. Objects and object parts

are represented as 3D voxel grids, and all neural modules, including the category model and the

encoder/decoder of the instance model, are parameterized by 3D convolutional neural networks.

A function fupdate is used to update the current canvas with the most recent part by summing the

voxel grids. A GNS model for a particular concept is trained on examples of the 3D voxel grids

with semantic part labels.

129

Appendix A

Additional details for Chapter 3

A.1 Hierarchical generative model

ψ θ I

M

Type Token Image

Figure A.1: The GNS hierarchical generative model.

The full hierarchical generative model of GNS is depicted in Fig. A.1. The joint density for

type ψ, token θ(m), and image I(m) factors as

P (ψ, θ(m), I(m)) = P (ψ)P (θ(m)|ψ)P (I(m)|θ(m)). (A.1)

The type ψ parameterizes a motor program for generating character tokens θ(m), unique exem-

plars of the concept. Both ψ and θ(m) are expressed as causal drawing parameters. An image I(m) is

obtained from token θ(m) by rendering the drawing parameters and sampling binary pixel values.

130

A.2 Training on causal drawing data

original stroke minimal spline

Figure A.2: Spline representation. Raw strokes (left) are converted into minimal splines (right)
using least-squares optimization. Crosses (left) indicate pen locations and red dots (right) indicate
spline control points.

To learn the parameters of P (ψ) and P (θ(m) | ψ), we fit our models to the human drawing

data from the Omniglot background set. In this drawing data, a character is represented as a

variable-length sequence of strokes, and each stroke is a variable-length sequence of pen locations

{z1, ..., zT}, with zt ∈ R2 (Fig. A.2, left). Before training our model on background drawings,

we convert each stroke into a minimal spline representation using least-squares optimization (Fig.

A.2, right), borrowing the B-spline tools from Lake et al. (2015). The number of spline control

points depends on the stroke complexity and is determined by a residual threshold. Furthermore,

we removed small strokes using a threshold on the trajectory length. These processing steps help

suppress noise and emphasize signal in the drawings. Our generative models are trained to produce

character drawings, where each drawing is represented as an ordered set of splines (strokes). The

number of strokes, and the number of spline coordinates per stroke, are allowed to vary in the

model.

A.3 Type prior

The type prior P (ψ) represents a character as a sequence of strokes, with each stroke decomposed

into a starting location yi ∈ R2, conveying the first spline control point, and a stroke trajectory

131

xi = {∆1, ...,∆N}, conveying deltas between spline control points. It generates character types one

stroke at a time, using a symbolic rendering procedure called frender as an intermediate processing

step after forming each stroke. An image canvas C is used as a memory state to convey information

about previous strokes. At each step i, the next stroke’s starting location and trajectory are sampled

with procedure GeneratePart. In this procedure, the current image canvas C is first read by

the location model (Fig. 3.3), a convolutional neural network (CNN) that processes the image and

returns a probability distribution for starting location yi:

yi ∼ p(yi | C).

The starting location yi is then passed along with the image canvas C to the stroke model, a Long

Short-Term Memory (LSTM) architecture with a CNN-based image attention mechanism.The stroke

model samples the next stroke trajectory xi sequentially one offset at a time, selectively attending to

different parts of the image canvas at each sample step and combining this information with the

context of yi:

xi ∼ p(xi | yi, C).

After GeneratePart returns, the stroke parameters yi, xi are rendered to produce an updated

canvas C = frender(yi, xi, C). The new canvas is then fed to the termination model, a CNN

architecture that samples a binary termination indicator vi:

vi ∼ p(vi | C).

Both our location model and stroke model follow a technique from Graves (2013), who

proposed to use neural networks with mixture outputs to model handwriting data. Parameters

{π1:K , µ1:K , σ1:K , ρ1:K} output by our network specify a Gaussian mixture model (GMM) with

132

K components (Fig. 3.3; colored ellipsoids), where πk ∈ (0, 1) is the mixture weight of the kth

component, µk ∈ R2 its means, σk ∈ R2
+ its standard deviations, and ρk ∈ (−1, 1) its correlation.

In our location model, a single GMM describes the distribution p(yi | C). In our stroke model, the

LSTM outputs one GMM at each timestep, describing p(∆t|∆1:t−1, yi, C). The termination model

CNN has no mixture outputs; it predicts a single Bernoulli probability to sample binary variable vi.

When sampling from the model at test time, we use a temperature parameter proposed by Ha & Eck

(2018) (see (Ha & Eck, 2018, Eq. 8)) to control the entropy of the mixture density outputs.

A.4 Token model

procedure GENERATETOKEN(ψ)
{κ, y1:κ, x1:κ} ← ψ . Unpack type-level variables
for i = 1 ... κ do

y
(m)
i ∼ P (y(m)

i | yi) . Sample token-level location
x
(m)
i ∼ P (x(m)

i | xi) . Sample token-level part
A(m) ∼ P (A(m)) . Sample affine warp transformation
θ ← {y(m)

1:κ , x
(m)
1:κ , A

(m)}
return θ . Return concept token

1

Figure A.3: Token model sampling procedure.

Character types ψ are used to parameterize the procedure GenerateToken(ψ), a probabilistic

program representation of token model P (θ(m) | ψ). The psuedo-code of this sampling procedure is

provided in Fig. A.3. The location model P (y(m)
i | yi) and part model P (x(m)

i | xi) are each zero-

mean Gaussians, with standard deviations fit to the background drawings following the procedure

of Lake et al. (2015) (see SM 2.3.3). The location model adds noise to the start of each stroke, and

the part model adds isotropic noise to the 2d cooridnates of each spline control point in a stroke. In

the affine warp A(m) ∈ R4, the first two dimensions control global re-scaling of spline coordinates,

133

and the second two control a global translation of the center of mass. The distribution is

P (A(m)) = N ([1, 1, 0, 0],ΣA), (A.2)

with the parameter ΣA similarly fit from background drawings (see SM 2.3.4 in (Lake et al., 2015)).

A.5 Supplemental figures

Figure A.4: Generating new exemplars with GNS. Twelve target images are highlighted in red
boxes. For each target image, the GNS model sampled 9 new exemplars, shown in a 3x3 grid under
the target.

134

I(c)

I(T)

Score: -618.6

I(c)

I(T)

Score: -1624.5

I(c)

I(T)

Score: -269.4

I(c)

I(T)

Score: -281.1

I(c)

I(T)

Score: -269.1

I(c)

I(T)

Score: -381.6

I(c)

I(T)

Score: -820.9

I(c)

I(T)

Score: -505.6

I(c)

I(T)

Score: -403.6

I(c)

I(T)

Score: -814.4

I(c)

I(T)

Score: -742.5

I(c)

I(T)

Score: -545.6

Figure A.5: Classification fits. Each row corresponds to one classification trial (one test image).
The first column shows parses from the correct training image re-fit to the test example, and the
second column parses from an incorrect training image. The two-way score for each train-test pair
is shown above the grid, and the model’s selected match is emboldened. The 4th and 6th row here
are misclassified trials.

135

Appendix B

Additional details for Chapter 4

B.1 Relation architecture

procedure GENERATEPART(x, C)! ci

return ci

procedure GENERATERELATION(x, C, ci)! ri

return ri

procedure GENERATETOKEN(x)
C 0 . Initialize blank canvas
while True do

ci GENERATEPART(x, C)
ri GENERATERELATION(x, C, ci)
C RENDER(C, ci, ri)
if TERMINATE(x, C) then

break
return C

1

4.95

prev. part
side

embedding

new part
side

embedding

CNN

prev. part
image

p0-s2 p5-s1

-1.03

p0-s2 p5-s5

1.37

p8-s0 p5-s2

…

option 1

softmax

option 2 option N

MLP

logits

probabilities 0.79 0.02 0.12…

…

hidden
layer

h h h

Figure B.1: Relation prediction architecture used in GNS subroutine GenerateRelation.

The GNS model uses polygon attachments as a model of relations between parts in an alien

figure. Each relation ri = {j, sj, si} encompasses 3 unique choices which together specify an

attachment. The first is the choice of attachment part, represented by index j, selected from the set

136

of all previous parts. Second and third are the choice of polygon side for the attachment part sj , and

for the current part si. These choices convey which polygon sides will be touching when the two

polygons are connected to one another.

To predict the next relation ri, GNS uses a neural network as an energy function to score every

combination of values {j, sj, si} (Fig. B.1). The choice of attachment part j is conveyed by a binary

image of the isolated part, which is processed to a hidden embedding by a CNN. The side choices

sj and si are each conveyed by a discrete embedding from a learnable dictionary with one entry

for every side of every primitive polygon, indexed as e[ci, si]. Each of these inputs is concatenated

and fed to the neural network, which returns a scalar energy that represents the unnormalized

log-probability of choosing this combination.

B.2 Training the GNS model

Our full GNS model and all lesions are training using minibatches of 60 meta-learning episodes.

The composition of data distributions for each lesion is provided in Table B.1. The number of

support examples in an episode is sampled uniformly between 1-6 at each iteration, and the number

of query examples is fixed at 5. Models are trained to maximize the log-likelihood (minimize log-

loss) of the query examples conditioned on support. Training proceeds for 40,000 batch iterations

using the Adam optimizer with cosine learning rate annealing. For each GNS model, we train 4

different models with different random initialization. In subsequent evaluations, we use the average

log-likelihood from all 4 seeds as the overall log-likelihood.

Model Composition

GNS (P) 60
GNS (P/R) 40/20
GNS (P/R/H) 30/15/15
GNS (P/R/H/C) 20/10/10/20

Table B.1: Minibatch compositions for GNS model training.

137

B.2.1 Data distribution C

The C distribution is designed to help teach the complete-the-pattern and reconfigure biases, two

inductive biases that are relevant in trials with the partial-pattern property. To generate episodes

from C, we first sample a trial type from the four partial-pattern types: Rotations-1, Rotations-2,

Primitives-1, Primitives-2. Next we sample a support set S by selecting 3 tokens from the trial type

that make a partial-pattern. Finally, to construct the query set Q we sample completion items with

probability pa = 0.59, reconfigure items with probability pb = 0.14, and alternate “noise" tokens

with the remaining probability mass. The values of pa and pb are set to mirror the empirical human

frequencies for each bias.

B.3 Likelihood analysis

All token likelihoods that we report for the GNS model are marginal image likelihoods. By default,

the GNS model computes the likelihood of a latent program or a token string, i.e. a sequence of

parts and relations {c1, r1, ..., cN , rN}. There is a many-to-one mapping from these latent programs

to images; to obtain the marginal likelihood of a token image, we sum the individual likelihoods

from all programs that yield the target image.

For both the GNS model and the Bayesian model, we fit a lapse parameter α that mixes the

model distribution p(y | X) with a null distribution q(y) to produce a final distribution p̃(y | X) =

(1−α) · p(y | X)+α · q(y). We use the complexity-based null distribution q(y) = P 0(y) discussed

in Zhou et al. (2023, Appendix D).

138

support set new
token freq delta

Best Worst

Figure B.2: Best and worst 20 human examples, measured by ℓ(GNS) - ℓ(Bayes).

139

Here are 3
examples
of a ‘dax’:

Here are 3
examples
of a ‘dax’:

Here are 3
examples
of a ‘dax’:

Here are 3
examples
of a ‘wif’:

Here are 3
examples
of a ‘wif’:

Here are 3
examples
of a ‘wif’:

Here are 3
examples
of a ‘wif’:

Here are 3
examples
of a ‘wif’:

Here are 3
examples
of a ‘lug’:

Here are 3
examples
of a ‘lug’:

Here are 3
examples
of a ‘lug’:

Here are 3
examples
of a ‘lug’:

Here are 3
examples
of a ‘lug’:

Here are 3
examples
of a ‘dax’:

Here are 3
examples
of a ‘kiki’:

Here are 3
examples
of a ‘kiki’:

Here are 3
examples
of a ‘kiki’:

Here are 3
examples
of a ‘kiki’:

Here are 3
examples
of a ‘kiki’:

Rotations-1 Rotations-2 Primitives-1 Primitives-2

Figure B.3: Inductive biases captured by GNS and Bayesian models (exhaustive version).

140

Appendix C

Additional details for Chapter 5

C.1 Network architectures

The MLP architecture for Experiment 1 was chosen ad-hoc before running any experiments. The

network receives a 60-dimensional input, and thus, we chose a hidden layer size of 30 units to

reduce this dimensionality by a factor of 2. L2 regularization was critical to the performance of

the network when small training sets were provided. For Experiment 2, we chose the minimal

CNN architecture that could effectively learn the image classification task that it was assigned. We

generated a large dataset of 30 categories and 20+ examples per category. Then, we started with a

large CNN and iteratively reduced the number of parameters until the minimal architecture was

found. L2 regularization was again critical to model performance.

C.2 Training parameters

For both the MLP and the CNN, we train the network to minimize negative log-likelihood loss,

using stochastic gradient descent (SGD) with the RMSprop update rule and a typical batch size of

141

32. There are a few exceptions to this batch size: when the training set is very small, we adjust the

batch size to ensure there are at least 5 training batches. Thus, for a training set with N categories

and K examples per category (a total of N ∗ K training points), we use a batch size of min(32,

N∗K
5

). The number of training epochs was chosen such that the network loss reaches an asymptote

for each the MLP and CNN. Training loss is monitored and used to save the best model.

142

Bibliography

Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., & Welling, M. (2019). The deep weight prior.

In International Conference on Learning Representations (ICLR).

Babcock, M. K., & Freyd, J. (1988). Perception of dynamic information in static handwritten forms.

American Journal of Psychology, 101(1), 111–130.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1(3), 295–311.

Bever, T. G., & Poeppel, D. (2010). Analysis by synthesis: A (re-) emerging program of research

for language and vision. Biolinguistics, 4, 174–200.

Bloom, P. (2000). How children learn the meanings of words. Cambridge, MA: MIT Press.

Botvinick, M., Barrett, D., Battaglia, P., de Freitas, N., Kumaran, D., & et al. (2017). Building

machines that learn and think for themselves. Behavioral and Brain Sciences, 40, e255.

Brodatz, P. (1966). Textures: a photographic album for artists and designers. New York, NY:

Dover Publications.

Bruna, J., & Mallat, S. (2013). Invariant scattering convolution networks. IEEE Transactions on

Pattern Analysis & Machine Intelligence, 35(8), 1872–1886.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: Wiley.

143

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., . . . Yu, F. (2015).

ShapeNet: An Information-Rich 3D Model Repository. arXiv preprint arXiv:1512.03012.

Chung, J., Ahn, S., & Bengio, Y. (2017). Hierarchical multiscale recurrent neural networks. In

International Conference on Learning Representations (ICLR).

Colunga, E., & Smith, L. B. (2005). From the lexicon to expectations about kinds: a role for

associative learning. Psychological Review, 112(2), 347–382.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by

latent semantic analysis. Journal of the American society for information science (JASIS), 41(6),

391–407.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.-R., & Kohli, P. (2017). Robustfill:

Neural program learning under noisy i/o. In International Conference on Machine Learning

(ICML).

Dewar, K. M., & Xu, F. (2010). Induction, overhypothesis, and the origin of abstract knowledge:

evidence from 9-month-old infants. Psychological Science, 21(12), 1871–1877.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014). A deep

convolutional activation feature for generic visual recognition. In International Conference on

Machine Learning (ICML).

Dubuisson, M., & Jain, A. K. (1994). A modified hausdorff distance for object matching. In

Proceedings of the 12th International Conference on Pattern Recognition (ICPR) (pp. 566–568).

Eden, M. (1962). Handwriting and pattern recognition. IRE Transactions on Information Theory, 8,

160–166.

144

Ellis, K., Ritchie, D., Solar-lezama, A., & Tenenbaum, J. B. (2018). Learning to infer graphics

programs from hand-drawn images. In Advances in Neural Information Processing Systems

(NeurIPS).

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K., & Hinton, G. E.

(2016). Attend, infer, repeat: Fast scene understanding with generative models. In Advances in

Neural Information Processing Systems (NeurIPS).

Feinman, R., & Lake, B. M. (2018). Learning inductive biases with simple neural networks. In

Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci).

Feinman, R., & Lake, B. M. (2019). Learning a smooth kernel regularizer for convolutional

neural networks. In Proceedings of the 41st Annual Conference of the Cognitive Science Society

(CogSci).

Feinman, R., & Lake, B. M. (2020). Generating new concepts with hybrid neuro-symbolic models.

In Proceedings of the 42nd Annual Conference of the Cognitive Science Society (CogSci).

Feinman, R., & Lake, B. M. (2021). Learning task-general representations with generative

neuro-symbolic modeling. In International Conference on Learning Representations (ICLR).

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep

networks. In International Conference on Machine Learning (ICML).

Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical

analysis. Cognition, 28, 3–71.

145

Freyd, J. J. (1983). Representing the dynamics of static form. Memory & Cognition, 11(4),

342–346.

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the

graphical lasso. Biostatistics, 9(3), 432–441.

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S. M. A., & Vinyals, O. (2018). Synthesizing

programs for images using reinforced adversarial learning. In International Conference on

Machine Learning (ICML).

Garcia, V., & Bruna, J. (2018). Few-shot learning with graph neural networks. In International

Conference on Learning Representations (ICLR).

Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurence in natural

images predicts contour grouping performance. Vision Research, 41(6), 711–724.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., & Rubin, D. (2013). Bayesian data

analysis. Boca Raton, FL: CRC.

Gelman, S. A. (2003). The essential child: Origins of essentialism in everyday thought. Oxford

Cognitive Development.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma.

Neural Computation, 4(1), 1–58.

George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M., Laan, C., Marthi, B., . . . et al. (2017). A

generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs.

Science, 358(6368).

Gershkoff-Stowe, L., & Smith, L. B. (2004). Shape and the first hundred nouns. Child Development,

75(4), 1098–1114.

146

Girshick, R. (2015). Fast R-CNN. In Proceedings of the International Conference on Computer

Vision (ICCV).

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate

object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008). A rational analysis of

rule-based concept learning. Cognitive Science, 32(1), 108–154.

Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a probabilistic language

of thought. In The Conceptual Mind: New Directions in the Study of Concepts (pp. 623–653).

Cambridge, MA: MIT Press.

Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality.

Psychological Review, 118(1), 110–119.

Grant, E., Finn, C., Levine, S., Darrell, T., & Griffiths, T. (2018). Recasting gradient-based

meta-learning as hierarchical Bayes. In International Conference on Learning Representations

(ICLR).

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint

arXiv:1410.5401.

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., . . . Lerchner, A.

(2019). Multi-object representation learning with iterative variational inference. In International

Conference on Machine Learning (ICML).

147

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). DRAW: A recurrent

neural network for image generation. In International Conference on Machine Learning (ICML).

Ha, D., & Eck, D. (2018). A neural representation of sketch drawings. In International Conference

on Learning Representations (ICLR).

Halle, M., & Stevens, K. (1962). Speech recognition: A model and a program for research. IRE

Transactions on Information Theory, 8(2), 155–159.

Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56(1), 51–65.

Hewitt, L. B., Le, T. A., & Tenenbaum, J. B. (2020). Learning to learn generative programs with

Memoised Wake-Sleep. In Uncertainty in Artificial Intelligence (UAI).

Hewitt, L. B., Nye, M. I., Gane, A., Jaakkola, T., & Tenenbaum, J. B. (2018). The Variational

Homoencoder: Learning to learn high capacity generative models from few examples. In

Uncertainty in Artificial Intelligence (UAI).

Hill, F., Hermann, K. M., Blunsom, P., & Clark, S. (2017). Grounded language learning in a 3d

simulated world. arXiv preprint arXiv:1710.09867.

Hospedales, T., Antoniou, A., Micaelli, P., & Storkey, A. (2022). Meta Learning in Neural Networks:

A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106–154.

James, K. H. (2010). Sensori-motor experience leads to changes in visual processing in the

developing brain. Developmental Science, 13(2), 279–288.

James, K. H., & Atwood, T. P. (2009). The role of sensorimotor learning in the perception of letter-

like forms: Tracking the causes of neural specialization for letters. Cognitive Neuropsychology,

26(1), 91–110.

148

James, K. H., & Gauthier, I. (2006). Letter processing automatically recruits a sensory–motor brain

network. Neuropsychologia, 44, 2937–2949.

James, K. H., & Gauthier, I. (2009). When writing impairs reading: Letter perception’s susceptibility

to motor interference. Journal of Experimental Psychology: General, 138(3), 416–31.

Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of

simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233–1258.

Jongejan, J., Rowley, H., Kawashima, T., Kim, J., & Fox-Gieg, N. (2016). The quick, draw!-a.i.

experiment. https://quickdraw.withgoogle.com/.

Keil, F. C. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: MIT Press.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical

bayesian models. Developmental Science, 10(3), 307–321.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the

National Academy of Sciences (PNAS), 105(31), 10687–10692.

Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models of inductive reasoning.

Psychological Review, 116(1), 20–58.

Kosiorek, A. R., Sabour, S., Teh, Y. W., & Hinton, G. E. (2019). Stacked Capsule Autoencoders.

In Advances in Neural Information Processing Systems (NeurIPS).

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems (NeurIPS).

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning.

Psychological Review, 99(1), 22–44.

149

https://quickdraw.withgoogle.com/

Kulkarni, T. D., & et al. (2015). Picture: A probabilistic programming language for scene perception.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Lake, B. M., & Baroni, M. (2018). Generalization without systematicity: On the compositional

skills of sequence-to-sequence recurrent networks. In International Conference on Machine

Learning (ICML).

Lake, B. M., & Piantadosi, S. T. (2020). People infer recursive visual concepts from just a few

examples. Computational Brain & Behavior, 3(1), 54–65.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through

probabilistic program induction. Science, 350(6266), 1332–1338.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2019). The Omniglot challenge: A 3-year

progress report. Current Opinion in Behavioral Sciences, 29, 97–104.

Lake, B. M., & Tenenbaum, J. B. (2010). Discovering structure by learning sparse graphs. In

Proceedings of the 32nd Annual Conference of the Cognitive Science Society (CogSci).

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that

learn and think like people. Behavioral and Brain Sciences, 40, E253.

Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early lexical learning.

Cognitive Development, 3(3), 299–321.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Li, S. Z. (2009). Markov random field modeling in image analysis. New York, NY: Springer-Verlag.

Ling, W., Trancoso, I., Dyer, C., & Black, A. (2016). Character-based neural machine translation.

In International Conference on Learning Representations (ICLR).

150

Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003a). Visual presentation of single letters

activates a premotor area involved in writing. Neuroimage, 19(4), 1492–1500.

Longcamp, M., Anton, J.-L., Roth, M., & Velay, J.-L. (2003b). Visual presentation of single letters

activates a premotor area involved in writing. NeuroImage, 19(4), 1492–1500.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019). The neuro-symbolic concept learner:

Interpreting scenes, words, and sentences from natural supervision. In International Conference

on Learning Representations (ICLR).

Marcus, G. F. (2003). The Algebraic Mind: Integrating Connectionism and Cognitive Science.

Cambridge, MA: MIT Press.

Markman, E. M., & Wachtel, G. F. (1988). Children’s use of mutual exclusivity to constrain the

meaning of words. Cognitive Psychology, 20(2), 121–157.

McClelland, J. L. (2010). Emergence in Cognitive Science. Topics in Cognitive Science, 2(4),

751–770.

McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., &

Smith, L. B. (2010). Letting structure emerge: Connectionist and dynamical systems approaches

to cognition. Trends in Cognitive Science, 14, 348–356.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (2013). Machine learning: an artificial

intelligence approach. Berlin: Springer Science+Business Media.

Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas, L. J., & Su, H. (2019). PartNet: A

large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Murphy, G. L. (2002). The Big Book of Concepts. Cambridge, MA: MIT Press.

151

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological

Review, 92(3), 289–316.

Neisser, U. (1966). Cognitive Psychology. Appleton-Century-Crofts.

Nye, M. I., Solar-Lezama, A., Tenenbaum, J. B., & Lake, B. M. (2020). Learning compositional

rules via neural program synthesis. arXiv preprint arXiv:2003.05562.

Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of abstract syntactic principles.

Cognition, 118(3), 306–338.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2016). The logical primitives of thought:

Empirical foundations for compositional cognitive models. Psychological Review, 123(4).

Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: An

astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

Reed, S., & de Freitas, N. (2016). Neural programmer-interpreters. In International Conference on

Learning Representations (ICLR).

Rehder, B. (2003). A causal-model theory of conceptual representation and categorization. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1141–1159.

Rehder, B., & Hastie, R. (2001). Causal knowledge and categories: The effects of causal beliefs on

categorization, induction, and similarity. Journal of Experimental Psychology: General, 130(3),

323–360.

Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K., & Wierstra, D. (2016). One-Shot

generalization in deep generative models. In International Conference on Machine Learning

(ICML).

152

Ritter, S., Barrett, D. G. T., Santoro, A., & Botvinick, M. M. (2017). Cognitive psychology for

deep neural networks: a shape bias case study. In International Conference on Machine Learning

(ICML).

Rogers, T. T., & McClelland, J. L. (2004). Semantic Cognition: A Parallel Distributed Processing

Approach. MIT Press.

Rozenblit, L., & Keil, F. (2002). The misunderstood limits of folk science: an illusion of explanatory

depth. Cognitive Science, 26, 521–562.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group. (1987). Parallel distributed

processing: Explorations in the microstructure of cognition. volume 1. Cambridge, MA: MIT

Press.

Salakhutdinov, R., Tenenbaum, J., & Torralba, A. (2012). One-shot learning with a hierarchical

nonparametric bayesian model. Proceedings of ICML Workshop on Unsupervised and Transfer

Learning, 195–206.

Salakhutdinov, R., Tenenbaum, J. B., & Torralba, A. (2013). Learning with hierarchical-deep

models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1958–1971.

Samuelson, L. K., & Smith, L. B. (1999). Early noun vocabularies: do ontology, category structure

and syntax correspond? Cognition, 73(1), 1–33.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition

with cortex-like mechanisms. IEEE Transactions on Pattern Analysis & Machine Intelligence,

29(3), 411–426.

Shyam, P., Gupta, S., & Dukkipati, A. (2017). Attentive recurrent comparators. In International

Conference on Machine Learning (ICML).

153

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image

recognition. In International Conference on Learning Representations (ICLR).

Smith, L. B., Jones, S. S., Landau, B., Gershkoff-Stowe, L., & Samuelson, L. (2002). Object name

learning provides on-the-job training for attention. Psychological Science, 13(1), 13–19.

Smolensky, P. (1987). Information Processing in Dynamical Systems: Foundations of Harmony

Theory. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition.

Volume 1 (pp. 194–281). Cambridge, MA: MIT Press.

Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. In

Advances in Neural Information Processing Systems (NeurIPS).

Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Simonsen, J. G., & Nie, J. Y. (2015). A hierarchical

recurrent encoder-decoder for generative context-aware query suggestion. In Proceedings of the

24th ACM International Conference on Information and Knowledge Management (CIKM).

Stuhlmuller, A., Tenenbaum, J. B., & Goodman, N. D. (2010). Learning Structured Generative

Concepts. In Proceedings of the 32nd Annual Conference of the Cognitive Science Society

(CogSci).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks.

In Advances in Neural Information Processing Systems (NeurIPS).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015).

Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind:

Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.

154

Tse, P. U., & Cavanagh, P. (2000). Chinese and Americans see opposite apparent motions in a

Chinese character. Cognition, 74(3), B27–B32.

Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., & Chaudhuri, S. (2018). HOUDINI: Lifelong

learning as program synthesis. In Advances in Neural Information Processing Systems (NeurIPS).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin,

I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems

(NeurIPS).

Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot

learning. In Advances in Neural Information Processing Systems (NeurIPS).

Ward, T. B. (1994). Structured imagination: The role of category structure in exemplar generation.

Cognitive Psychology, 27, 1–40.

Xu, F., & Tenenbaum, J. B. (2007). Word learning as Bayesian inference. Psychological Review,

114(2), 245–272.

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., . . . Bengio, Y. (2016).

Show, attend and tell: Neural image caption generation with visual attention. In International

Conference on Machine Learning (ICML).

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., & Tenenbaum, J. B. (2018). Neural-symbolic

VQA: Disentangling reasoning from vision and language understanding. In Advances in Neural

Information Processing Systems (NeurIPS).

Yuille, A. L., & Liu, C. (2019). Deep nets: What have they ever done for vision? International

Journal of Computer Vision, 129, 781–802.

Zhou, Y., Feinman, R., & Lake, B. M. (2023). Compositional diversity in visual concept learning.

arXiv preprint arXiv:2305.19374.

155

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

30575875

2023

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Tradition 1: Structured knowledge
	Tradition 2: Statistical knowledge
	Integrating structure and statistics
	Contents of the thesis

	Generating new concepts with neuro-symbolic models
	Preface
	Introduction
	Related Work
	Omniglot Case Study
	Neuro-Symbolic Model
	Alternative Models
	Model Hyperparameters
	Experiments
	Evaluation on held-out concepts
	Generating new concepts

	Discussion

	Few-shot learning of handwritten character concepts
	Preface
	Introduction
	Related Work
	Generative Model
	Type prior
	Token model
	Image model

	Probabilistic Inference
	Inference for one-shot classification
	Inference for generating new exemplars
	Inference for marginal image likelihoods

	Experiments
	One-shot classification
	Parsing
	Generating new exemplars
	Generating new concepts (unconstrained)
	Marginal image likelihoods

	Discussion

	Few-shot learning of structured visual concepts
	Preface
	Structured visual concepts
	Stimuli
	Few-shot learning tasks
	Symbolic Bayesian model

	Generative neuro-symbolic (GNS) model
	Encoder
	Decoder

	Training with meta-learning
	Experiments
	Discussion

	Learning inductive biases with simple neural networks
	Preface
	Introduction
	Experimental Paradigm
	Experiment 1: Multilayer perceptron trained on synthetic objects
	Experiment 2: Convolutional network trained on synthetic objects
	Experiment 3: The onset of vocabulary acceleration
	Discussion

	Learning a smooth kernel regularizer for convolutional neural networks
	Preface
	Introduction
	Background
	Bayesian interpretation of regularization
	Experiments
	Silhouettes
	Tiny ImageNet

	Discussion

	Conclusion and future directions
	GNS model of structured blocks concepts
	Parabolas
	Parallel towers

	GNS model of 2D objects
	Ice cream
	House
	Building

	Proposal: GNS model of 3D objects

	Appendices
	Additional details for Chapter 3
	Hierarchical generative model
	Training on causal drawing data
	Type prior
	Token model
	Supplemental figures

	Additional details for Chapter 4
	Relation architecture
	Training the GNS model
	Data distribution C

	Likelihood analysis

	Additional details for Chapter 5
	Network architectures
	Training parameters

	Bibliography

